9 research outputs found
A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation
Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo
Abstract Introduction Macrophages comprise an essential component of the mammary microenvironment necessary for normal gland development. However, there is no viable in vivo model to study their role in normal human breast function. We hypothesized that adding primary human macrophages to the murine mammary gland would enhance and provide a novel approach to examine immune-stromal cell interactions during the humanization process. Methods Primary human macrophages, in the presence or absence of ectopic estrogen stimulation, were used to humanize mouse mammary glands. Mechanisms of enhanced humanization were identified by cytokine/chemokine ELISAs, zymography, western analysis, invasion and proliferation assays; results were confirmed with immunohistological analysis. Results The combined treatment of macrophages and estrogen stimulation significantly enhanced the percentage of the total gland humanized and the engraftment/outgrowth success rate. Timecourse analysis revealed the disappearance of the human macrophages by two weeks post-injection, suggesting that the improved overall growth and invasiveness of the fibroblasts provided a larger stromal bed for epithelial cell proliferation and structure formation. Confirming their promotion of fibroblasts humanization, estrogen-stimulated macrophages significantly enhanced fibroblast proliferation and invasion in vitro, as well as significantly increased proliferating cell nuclear antigen (PCNA) positive cells in humanized glands. Cytokine/chemokine ELISAs, zymography and western analyses identified TNFα and MMP9 as potential mechanisms by which estrogen-stimulated macrophages enhanced humanization. Specific inhibitors to TNFα and MMP9 validated the effects of these molecules on fibroblast behavior in vitro, as well as by immunohistochemical analysis of humanized glands for human-specific MMP9 expression. Lastly, glands humanized with macrophages had enhanced engraftment and tumor growth compared to glands humanized with fibroblasts alone. Conclusions Herein, we demonstrate intricate immune and stromal cell paracrine interactions in a humanized in vivo model system. We confirmed our in vivo results with in vitro analyses, highlighting the value of this model to interchangeably substantiate in vitro and in vivo results. It is critical to understand the signaling networks that drive paracrine cell interactions, for tumor cells exploit these signaling mechanisms to support their growth and invasive properties. This report presents a dynamic in vivo model to study primary human immune/fibroblast/epithelial interactions and to advance our knowledge of the stromal-derived signals that promote tumorigenesis
Probing the heme-binding site of the cytochrome c maturation protein CcmE.
Maturation of c-type cytochromes in many bacterial species and plant mitochondria requires the participation of the heme chaperone CcmE that binds heme covalently via a His residue (H130 in Escherichia coli) before transferring it stereospecifically to the apo form of cytochromes c. Only the structure of the apo form of CcmE is known; the heme-binding site has been modeled on the surface of the protein in the vicinity of H130. We have determined the reduction potential of CcmE, which suggests that heme bound to CcmE is not as exposed to solvent as was initially thought. Alanine insertions in the vicinity of the heme-binding histidine (which we showed by NMR do not perturb the protein fold) strikingly abolish formation of both holo-CcmE and cytochrome c, whereas previously reported point mutations of residues adjacent to H130 gave only a partial attenuation. The heme iron coordinating residue Y134 proved to be strictly required for axial ligation of both ferrous and ferric heme. These results indicate the existence of a conformationally well-defined heme pocket that involves amino acids located in the proximity of H130. However, mutation of Y134 affected neither heme attachment to CcmE nor cytochrome c maturation, suggesting that heme binding and release from CcmE are hydrophobically driven and relatively indifferent to axial ligation
Functional characterization of the C-terminal domain of the cytochrome c maturation protein CcmE.
CcmE is a heme chaperone involved in the periplasmic maturation of c-type cytochromes in many bacteria and plant mitochondria. It binds heme covalently and subsequently transfers it to the apo form of cytochromes c. To examine the role of the C-terminal domain of CcmE in the binding of heme, in vitro heme binding to the apo form of a truncated (immediately before Pro-136) version of the periplasmic domain of the heme chaperone from Escherichia coli was studied. Removal of the C-terminal domain dramatically altered the ligation of non-covalently bound heme in CcmE' (the soluble form lacking the membrane anchor) but only slightly affected its affinity for protoporphyrin IX and 8-anilino-1-naphthalenesulfonate. This finding has significant mechanistic implications for in vivo holo-CcmE formation and indicates that the C-terminal region is not required for the recruitment and docking of heme into its binding site but is likely to contain amino acid(s) involved in heme iron axial coordination. Removal of the C-domain significantly impaired in vivo heme binding to CcmE and conversion of apocytochrome to holoprotein by a similar factor, suggesting that the C-terminal domain of the chaperone is primarily involved in heme binding to CcmE rather than in heme transfer to the apo cytochrome
YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis
LOA1, a yeast member of the glycerolipid acyltransferase family, encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets (LDs) and involved in triacylglycerol (TAG) accumulation. Loa1p, recruited during LD formation, preferentially directs oleic acidâcontaining phosphatidic acid species into the TAG biosynthetic pathway