836 research outputs found

    Magnetic phases of electron-doped, infinite-layer Sr1−x_{1-x}Lax_xCuO2_2 from first-principles density functional calculations

    Full text link
    The magnetic phases of electron-doped, infinite-layer Sr1−xLaxCuO2\mathrm{Sr}_{1-x}\mathrm{La}_{x}\mathrm{CuO}_2 are elucidated by first-principles density functional calculations. We describe the antiferromagnetic parent state, metallic phase transition, lattice structure and magnetic anisotropy evolution upon doping, as well as pressure-induced changes to the density of states at Fermi level that are consistent with experiments where comparison is possible. We investigate low-energy states with multiple magnetic configurations and study their specific heat coefficients and magnetic exchange coupling, as well as the density of states at Fermi level. The latter quantity is used to study the effects of spin fluctuations on the electronic structure of this strongly correlated material.Comment: 15 pages, 9 figure

    High-Tc superconductivity in entirely end-bonded multi-walled carbon nanotubes

    Get PDF
    We report that entirely end-bonded multi-walled carbon nanotubes (MWNTs) can show superconductivity with the transition temperature Tc as high as 12K that is approximately 40-times larger than those reported in ropes of single-walled nanotubes. We find that emergence of this superconductivity is very sensitive to junction structures of Au electrode/MWNTs. This reveals that only MWNTs with optimal numbers of electrically activated shells, which are realized by the end-bonding, can allow the superconductivity due to inter shell effects.Comment: 5 page

    Meissner effect in honeycomb arrays of multi-walled carbon nanotubes

    Full text link
    We report Meissner effect for type-II superconductors with a maximum Tc of 19 K, which is the highest value among those in new-carbon related superconductors, found in the honeycomb arrays of multi-walled CNTs (MWNTs). Drastic reduction of ferromagnetic catalyst and efficient growth of MWNTs by deoxidization of catalyst make the finding possible. The weak magnetic anisotropy, superconductive coherence length (- 7 nm), and disappearance of the Meissner effect after dissolving array structure indicate that the graphite structure of an MWNT and those intertube coupling in the honeycomb array are dominant factors for the mechanism.Comment: 6 page

    Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector

    Full text link
    We measured forces applied by an actuator with a YBCO film at near 77 K for the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81 square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on a test mass. The presented actuator system can be used to displace the mirror of LCGT for fringe lock of the interferometer.Comment: 9 pages, 3 figure

    A Xenon Condenser with a Remote Liquid Storage Vessel

    Full text link
    We describe the design and operation of a system for xenon liquefaction in which the condenser is separated from the liquid storage vessel. The condenser is cooled by a pulse tube cryocooler, while the vessel is cooled only by the liquid xenon itself. This arrangement facilitates liquid particle detector research by allowing easy access to the upper and lower flanges of the vessel. We find that an external xenon gas pump is useful for increasing the rate at which cooling power is delivered to the vessel, and we present measurements of the power and efficiency of the apparatus.Comment: 22 pages, 7 figures Corrected typos in authors lis

    In vivo impact of a 4 bp deletion mutation in the DLX3 gene on bone development

    Get PDF
    AbstractDistal-less 3 (DLX3) gene mutations are etiologic for Tricho-Dento-Osseous syndrome. To investigate the in vivo impact of mutant DLX3 on bone development, we established transgenic (TG) mice expressing the c.571_574delGGGG DLX-3 gene mutation (MT-DLX3) driven by a mouse 2.3 Col1A1 promoter. Microcomputed tomographic analyses demonstrated markedly increased trabecular bone volume and bone mineral density in femora from TG mice. In ex vivo experiments, TG mice showed enhanced differentiation of bone marrow stromal cells to osteoblasts and increased expression levels of bone formation markers. However, TG mice did not show enhanced dynamic bone formation rates in in vivo fluorochrome double labeling experiments. Osteoclastic differentiation capacities of bone marrow monocytes were reduced in TG mice in the presence of osteoclastogenic factors and the numbers of TRAP(+) osteoclasts on distal metaphyseal trabecular bone surfaces were significantly decreased. TRACP 5b and CTX serum levels were significantly decreased in TG mice, while IFN-γ levels were significantly increased. These data demonstrate that increased levels of IFN-γ decrease osteoclast bone resorption activities, contributing to the enhanced trabecular bone volume and mineral density in these TG mice. These data suggest a novel role for this DLX-3 mutation in osteoclast differentiation and bone resorption
    • …
    corecore