2,540 research outputs found

    Mapreduce and Heterogeneity: Power-Aware Bag-of-Tasks, Framework Parameter Sensitivity, and Dynamic Cluster Aware Framework Configuration

    Get PDF
    This dissertation presents the techniques for adaptation of MapReduce frameworks to incorporate heterogeneity-aware scheduling algorithms, an inspection of cluster configurations and how they impact these scheduling algorithms, an analysis regarding how the cluster configuration and the heterogeneity-aware scheduling can work together to minimize turnaround time and/or power consumption of the cluster when executing MapReduce applications, and how these lessons can be applied more broadly to Big Data infrastructure outside of MapReduce that supports multiple Big Data frameworks simultaneously. Heterogeneity exists in various capacities in any given cluster, from static (Physical and Platform) heterogeneity to dynamic heterogeneity (Transient Data, Transient Applications, and Irregular Hardware Behavior). Within the cluster there are historically several types of mitigation strategies for each of these types of heterogeneity, and each has their pros and cons. We discuss these mitigation strategies and the types of heterogeneity each of these strategies is able to address, and the history of the related work in the field. After this, we consider taking host-level metrics and using them to schedule tasks in real time, with a desire to address cluster-wide energy usage. To do this, we consider estimators for power consumption that are available on-chip, namely temperature. We establish a correlation between CPU temperature and power consumption, then derive a scheduling algorithm that eliminates nodes that are consuming too much power from the pool of schedule-able resources. In order to do this we focus on the ability of MapReduce frameworks, constructed as we have constructed the frameworks described in this thesis, to delay binding of tasks to specific workers. We analyze the impacts this has on turnaround time of a MapReduce application, with analysis around setting this threshold properly to reduce impact on turnaround time while shifting power consumption around in the cluster, away from nodes that are over-consuming. We also address concerns with respect to upgrading a cluster in stages, introducing more Physical Heterogeneity at various levels and the types of adjustments that need to be made to MapReduce configurations in order to combat the increased Heterogeneity. In particular, we look at the concerns for MapReduce platform mis-configuration and its impacts on turnaround time, analyzing the ways in which these types of errors can be mitigated between incremental platform upgrades. In an effort to address this, we introduce a Dynamic Heterogeneity Awareness (DHA) module to our MapReduce framework in order to address these upgrades, and allow better spreading of tasks by the framework, in order to further improve turnaround time and resource utilization. Finally we consider the implications for framework and application co-tenancy, and we describe the state of art in these areas. We focus on describing what co-tenancy is, why it\u27s important, and how the state of the art can be expanded to in order to leverage findings from this thesis to make these co-tenant clusters increase application and framework performance as well as improving these clusters with considerations for energy efficiency

    A 90-year-old patient presenting with postoperative hypotension and a new murmur: a case report

    Get PDF
    INTRODUCTION: Hospitalists are frequently consulted on postoperative patients with hypotension. Postoperative hypotension is common and can be due to variety of causes. Systolic anterior motion of the mitral valve leading to left ventricular outflow tract obstruction is a rare cause of postoperative hypotension and can occur without prior structural heart disease. A high index of suspicion can lead to early recognition of this unique condition. CASE PRESENTATION: A 90-year-old Caucasian woman with no known structural heart abnormality was admitted to the intensive care unit with hypotension after a left hip arthroplasty revision. A transthoracic echocardiogram revealed systolic anterior motion of the mitral valve and dynamic left ventricular outflow tract obstruction as the likely cause of her hypotension. Our patient was treated with fluid resuscitation and phenylephrine with improvement in blood pressure. A repeat echocardiogram on postoperative day 5 showed resolution of the left ventricular outflow tract obstruction. Intraoperative vasodilatation and volume loss that caused underfilling of the left ventricle likely led to dynamic outflow tract obstruction in our patient. CONCLUSIONS: Hospitalists should be aware of systolic anterior motion of the mitral valve as a rare peri-operative complication in patients with or without underlying cardiac pathology as it is treated differently than other causes of peri-operative hypotension. Clinical suspicion, early recognition, and prompt treatment can improve clinical outcomes in these patients

    Teelt en saldo van deder : Camelina sativa (deder) als alternatieve teelt

    Get PDF
    Deder is een ‘nieuw’ gewas voor de Nederlandse landbouw. Deder (Camelina Sativa (L.)) is een gewas dat vroeger al in Europa werd gebruikt. Momenteel wordt deder niet meer verbouwd. De hernieuwde interesse komt vooral voort uit de zoektocht naar perspectiefvolle oliehoudende energiegewassen. In verband met de sterke interesse als energiegewas is de energie- en broeikasgasbalans van deder bepaald. Hieruit blijkt dat deder, afhankelijk van zomer- of wintervariant, licht lager of licht beter scoort als winterkoolzaad

    Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C58

    Get PDF
    PSR J0205+6449 is a young rotation-powered pulsar in SNR 3C 58. It is one of only three young (<10,000 year old) pulsars which are so far detected in the radio and the classical X-ray bands, as well as at hard X-rays above 20 keV and at high-energy (>100 MeV) γ\gamma-rays. The other two young pulsars are the Crab and PSR B1509-58. Our aim is to derive the timing and spectral characteristics of PSR J0205+6449 over the broad X-ray band from ~0.5 to ~270 keV. We used all publicly available RXTE observations of PSR J0205+6449 to first generate accurate ephemerides over the period September 30, 2000 - March 18, 2006. Next, phase-folding procedures yielded pulse profiles using data from RXTE PCA and HEXTE, and XMM-Newton EPIC PN. While our timing solutions are consistent with earlier results, our work shows sharper structures in the PCA X-ray profile. The X-ray pulse profile consists of two sharp pulses, separated in phase by 0.488(2), which can be described with 2 asymmetric Lorentzians, each with the rising wing steeper than the trailing wing, and full-width-half-maximum 1.41(5) ms and 2.35(22) ms, respectively. We find an indication for a flux increase by a factor ~2, about 3.5 sigma above the time-averaged value, for the second, weaker pulse during a two-week interval, while its pulse shape did not change. The spectrum of the pulsed X-ray emission is of non-thermal origin, exhibiting a power-law shape with photon index Gamma = 1.03(2) over the energy band ~0.5 to ~270 keV. In the energy band covered with the PCA (~3-30 keV) the spectra of the two pulses have the same photon index, namely, 1.04(3) and 1.10(8), respectively.Comment: 10 pages; 7 figures (2 in color), resubmitted to A&A, including referee comment

    Fading of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    Three observations of the 5.54 s Transient Anomalous X-ray Pulsar XTE J1810-197 obtained over 6 months with the Newton X-Ray Multi-Mirror Mission (XMM-Newton) are used to study its spectrum and pulsed light curve as the source fades from outburst. The decay is consistent with an exponential of time constant 300 days, but not a power law as predicted in some models of sudden deep crustal heating events. All spectra are well fitted by a blackbody plus a steep power law, a problematic model that is commonly fitted to anomalous X-ray pulsars (AXPs). A two-temperature blackbody fit is also acceptable, and better motivated physically in view of the faint optical/IR fluxes, the X-ray pulse shapes that weakly depend on energy in XTE J1810-197, and the inferred emitting areas that are less than or equal to the surface area of a neutron star. The fitted temperatures remained the same while the flux declined by 46%, which can be interpreted as a decrease in area of the emitting regions. The pulsar continues to spin down, albeit at a reduced rate of (5.1+/-1.6)x10^{-12} s s^{-1}. The inferred characteristic age Tau_c = P/2Pdot ~17,000 yr, magnetic field strength B_s ~1.7x10^{14} G, and outburst properties are consistent with both the outburst and quiescent X-ray luminosities being powered by magnetic field decay, i.e., XTE J1810-197 is a magnetar.Comment: 10 pages, 5 figures, accepted by Ap.
    • …
    corecore