692 research outputs found
Analytic study of Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics
Using Sturm-Liouville (SL) eigenvalue problem, we investigate several
properties of holographic s-wave superconductors in Gauss-Bonnet gravity with
Born-Infeld electrodynamics in the probe limit. Our analytic scheme has been
found to be in good agreement with the numerical results. From our analysis it
is quite evident that the scalar hair formation at low temperatures is indeed
affected by both the Gauss-Bonnet as well as the Born-Infeld coupling
parameters. We also compute the critical exponent associated with the
condensation near the critical temperature. The value of the critical exponent
thus obtained indeed suggests a universal mean field behavior.Comment: 9 pages, Latex, minor modifications, To appear in JHE
Analytic study of properties of holographic p-wave superconductors
In this paper, we analytically investigate the properties of p-wave
holographic superconductors in -Schwarzschild background by two
approaches, one based on the Sturm-Liouville eigenvalue problem and the other
based on the matching of the solutions to the field equations near the horizon
and near the asymptotic region. The relation between the critical
temperature and the charge density has been obtained and the dependence of the
expectation value of the condensation operator on the temperature has been
found. Our results are in very good agreement with the existing numerical
results. The critical exponent of the condensation also comes out to be 1/2
which is the universal value in the mean field theory.Comment: Latex, To appear in JHE
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
Lovelock-Lifshitz Black Holes
In this paper, we investigate the existence of Lifshitz solutions in Lovelock
gravity, both in vacuum and in the presence of a massive vector field. We show
that the Lovelock terms can support the Lifshitz solution provided the
constants of the theory are suitably chosen. We obtain an exact black hole
solution with Lifshitz asymptotics of any scaling parameter in both
Gauss-Bonnet and in pure 3rd order Lovelock gravity. If matter is added in the
form of a massive vector field, we also show that Lifshitz solutions in
Lovelock gravity exist; these can be regarded as corrections to Einstein
gravity coupled to this form of matter. For this form of matter we numerically
obtain a broad range of charged black hole solutions with Lifshitz asymptotics,
for either sign of the cosmological constant. We find that these asymptotic
Lifshitz solutions are more sensitive to corrections induced by Lovelock
gravity than are their asymptotic AdS counterparts. We also consider the
thermodynamics of the black hole solutions and show that the temperature of
large black holes with curved horizons is proportional to where is
the critical exponent; this relationship holds for black branes of any size. As
is the case for asymptotic AdS black holes, we find that an extreme black hole
exists only for the case of horizons with negative curvature. We also find that
these Lovelock-Lifshitz black holes have no unstable phase, in contrast to the
Lovelock-AdS case. We also present a class of rotating Lovelock-Lifshitz black
holes with Ricci-flat horizons.Comment: 26 pages, 10 figures, a few references added, typo fixed and some
comments have been adde
Einstein-Maxwell gravitational instantons and five dimensional solitonic strings
We study various aspects of four dimensional Einstein-Maxwell multicentred
gravitational instantons. These are half-BPS Riemannian backgrounds of minimal
N=2 supergravity, asymptotic to R^4, R^3 x S^1 or AdS_2 x S^2. Unlike for the
Gibbons-Hawking solutions, the topology is not restricted by boundary
conditions. We discuss the classical metric on the instanton moduli space. One
class of these solutions may be lifted to causal and regular multi `solitonic
strings', without horizons, of 4+1 dimensional N=2 supergravity, carrying null
momentum.Comment: 1+30 page
Holographic superfluids as duals of rotating black strings
We study the breaking of an Abelian symmetry close to the horizon of an
uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary
theory living on R^2 x S^1 has no rotation, but a magnetic field that is
aligned with the axis of the black string. This boundary theory decribes
non-rotating (2+1)-dimensional holographic superfluids with non-vanishing
superfluid velocity. We study these superfluids in the grand canonical ensemble
and show that for sufficiently small angular momentum of the dual black string
and sufficiently small superfluid velocity the phase transition is 2nd order,
while it becomes 1st order for larger superfluid velocity. Moreover, we observe
that the phase transition is always 1st order above a critical value of the
angular momentum independent of the choice of the superfluid velocity.Comment: 9 pages including 5 figures: v2: 12 pages including 7 figures; 2
figures added, discussion on free energy added; accepted for publication in
JHE
A Note on Gauss-Bonnet Holographic Superconductors
We present an analytic treatment near the phase transition for the critical
temperature of (3+1)-dimensional holographic superconductors in
Einstein-Gauss-Bonnet gravity with backreaction. We find that the backreaction
makes the critical temperature of the superconductor decrease and condensation
harder. This is consistent with previous numerical results.Comment: 6 pages, typos corrected, references added, published versio
Holography of Charged Dilaton Black Holes
We study charged dilaton black branes in . Our system involves a
dilaton coupled to a Maxwell field with dilaton-dependent
gauge coupling, . First, we find the solutions for
extremal and near extremal branes through a combination of analytical and
numerical techniques. The near horizon geometries in the simplest cases, where
, are Lifshitz-like, with a dynamical exponent
determined by . The black hole thermodynamics varies in an interesting
way with , but in all cases the entropy is vanishing and the specific
heat is positive for the near extremal solutions. We then compute conductivity
in these backgrounds. We find that somewhat surprisingly, the AC conductivity
vanishes like at T=0 independent of . We also explore the
charged black brane physics of several other classes of gauge-coupling
functions . In addition to possible applications in AdS/CMT, the
extremal black branes are of interest from the point of view of the attractor
mechanism. The near horizon geometries for these branes are universal,
independent of the asymptotic values of the moduli, and describe generic
classes of endpoints for attractor flows which are different from .Comment: 33 pages, 3 figures, LaTex; v2, references added; v3, more refs
added; v4, refs added, minor correction
Holographic Superconductor for a Lifshitz fixed point
We consider the gravity dual of strongly coupled system at a Lifshitz-fixed
point and finite temperature, which was constructed in a recent work
arXiv:0909.0263. We construct an Abelian Higgs model in that background and
calculate condensation and conductivity using holographic techniques. We find
that condensation happens and DC conductivity blows up when temperature turns
below a critical value.Comment: 14 pages, 4 figures, v4: improved version, references adde
Emergent Quantum Near-Criticality from Baryonic Black Branes
We find new black 3-brane solutions describing the "conifold gauge theory" at
nonzero temperature and baryonic chemical potential. Of particular interest is
the low-temperature limit where we find a new kind of weakly curved
near-horizon geometry; it is a warped product AdS_2 x R^3 x T^{1,1} with warp
factors that are powers of the logarithm of the AdS radius. Thus, our solution
encodes a new type of emergent quantum near-criticality. We carry out some
stability checks for our solutions. We also set up a consistent ansatz for
baryonic black 2-branes of M-theory that are asymptotic to AdS_4 x Q^{1,1,1}.Comment: 29 pages, 4 figures; v2 discussion of entropy revised, minor changes;
v3 note added, minor improvements, version published in JHE
- âŠ