1,559 research outputs found

    Ultra-low vibration pulse-tube cryocooler stabilized cryogenic sapphire oscillator with 10^-16 fractional frequency stability

    Full text link
    A low maintenance long-term operational cryogenic sapphire oscillator has been implemented at 11.2 GHz using an ultra-low-vibration cryostat and pulse-tube cryocooler. It is currently the world's most stable microwave oscillator employing a cryocooler. Its performance is explained in terms of temperature and frequency stability. The phase noise and the Allan deviation of frequency fluctuations have been evaluated by comparing it to an ultra-stable liquid-helium cooled cryogenic sapphire oscillator in the same laboratory. Assuming both contribute equally, the Allan deviation evaluated for the cryocooled oscillator is sigma_y = 1 x 10^-15 tau^-1/2 for integration times 1 < tau < 10 s with a minimum sigma_y = 3.9 x 10^-16 at tau = 20 s. The long term frequency drift is less than 5 x 10^-14/day. From the measured power spectral density of phase fluctuations the single side band phase noise can be represented by L_phi(f) = 10^-14.0/f^4+10^-11.6/f^3+10^-10.0/f^2+10^-10.2/f+ 10^-11.0 for Fourier frequencies 10^-3<f<10^3 Hz in the single oscillator. As a result L_phi approx -97.5 dBc/Hz at 1 Hz offset from the carrier.Comment: 8 pages, 10 figures, presented at European Frequency and Time Forum, ESTEC, Noordwijk, Netherland, April 11-16th 2010 accepted in IEEE Trans. on Micro. Theory & Technique

    Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators with 1 x 10^-16 frequency instability

    Full text link
    Two nominally identical ultra-stable cryogenic microwave oscillators are compared. Each incorporates a dielectric-sapphire resonator cooled to near 6 K in an ultra-low vibration cryostat using a low-vibration pulse-tube cryocooler. The phase noise for a single oscillator is measured at -105 dBc/Hz at 1 Hz offset on the 11.2 GHz carrier. The oscillator fractional frequency stability is characterized in terms of Allan deviation by 5.3 x 10^-16 tau^-1/2 + 9 x 10^-17 for integration times 0.1 s < tau < 1000 s and is limited by a flicker frequency noise floor below 1 x 10^-16. This result is better than any other microwave source even those generated from an optical comb phase-locked to a room temperature ultra-stable optical cavity.Comment: 4 pages, 5 figure

    Cryogenic Sapphire Oscillator using a low-vibration design pulse-tube cryocooler: First results

    Full text link
    A Cryogenic Sapphire Oscillator has been implemented at 11.2 GHz using a low-vibration design pulse-tube cryocooler. Compared with a state-of-the-art liquid helium cooled CSO in the same laboratory, the square root Allan variance of their combined fractional frequency instability is σy=1.4×1015τ1/2\sigma_y = 1.4 \times 10^{-15}\tau^{-1/2} for integration times 1<τ<101 < \tau < 10 s, dominated by white frequency noise. The minimum σy=5.3×1016\sigma_y = 5.3 \times 10^{-16} for the two oscillators was reached at τ=20\tau = 20 s. Assuming equal contributions from both CSOs, the single oscillator phase noise Sϕ96  dB  rad2/HzS_{\phi} \approx -96 \; dB \; rad^2/Hz at 1 Hz offset from the carrier.Comment: 5 pages, 5 figures, accepted in IEEE Trans on Ultrasonics, Ferroelectrics and Frequency Contro

    Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    Get PDF
    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented
    corecore