6 research outputs found

    Performance Testing of a Novel Off-plane Reflection Grating and Silicon Pore Optic Spectrograph at PANTER

    Full text link
    An X-ray spectrograph consisting of radially ruled off-plane reflection gratings and silicon pore optics was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The silicon pore optic (SPO) stack used is a test module for the Arcus small explorer mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. The gratings were aligned using an active alignment module which allows for the independent manipulation of subsequent gratings to a reference grating in three degrees of freedom using picomotor actuators which are controllable external to the test chamber. We report the line spread functions of the spectrograph and the actively aligned gratings, and plans for future development.Comment: Draft Version March 19, 201

    Performance Testing of a Large-Format Reflection Grating Prototype for a Suborbital Rocket Payload

    Full text link
    The soft X-ray grating spectrometer on board the Off-plane Grating Rocket Experiment (OGRE) hopes to achieve the highest resolution soft X-ray spectrum of an astrophysical object when it is launched via suborbital rocket. Paramount to the success of the spectrometer are the performance of the >250>250 reflection gratings populating its reflection grating assembly. To test current grating fabrication capabilities, a grating prototype for the payload was fabricated via electron-beam lithography at The Pennsylvania State University's Materials Research Institute and was subsequently tested for performance at Max Planck Institute for Extraterrestrial Physics' PANTER X-ray Test Facility. Bayesian modeling of the resulting data via Markov chain Monte Carlo (MCMC) sampling indicated that the grating achieved the OGRE single-grating resolution requirement of Rg(λ/Δλ)>4500R_{g}(\lambda/\Delta\lambda)>4500 at the 94% confidence level. The resulting RgR_g posterior probability distribution suggests that this confidence level is likely a conservative estimate though, since only a finite RgR_g parameter space was sampled and the model could not constrain the upper bound of RgR_g to less than infinity. Raytrace simulations of the system found that the observed data can be reproduced with a grating performing at Rg=R_g=\infty. It is therefore postulated that the behavior of the obtained RgR_g posterior probability distribution can be explained by a finite measurement limit of the system and not a finite limit on RgR_g. Implications of these results and improvements to the test setup are discussed.Comment: 25 pages, 16 figures, preprint of an article accepted for publication in the Journal of Astronomical Instrumentation \copyright 2020 [copyright World Scientific Publishing Company] [https://www.worldscientific.com/worldscinet/jai

    Toward volume manufacturing of high-performance soft x-ray critical-angle transmission gratings

    Full text link
    High-resolution (R=λ/Δλ>2000R = \lambda /\Delta \lambda > 2000) x-ray absorption and emission line spectroscopy in the soft x-ray band is a crucial diagnostic for the exploration of the properties of ubiquitous warm and hot plasmas and their dynamics in the cosmic web, galaxy clusters, galaxy halos, intragalactic space, and star atmospheres. Soft x-ray grating spectroscopy with R>10,000R > 10{,}000 has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx design reference mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps 2000\approx 2000 large-area CAT gratings. We are developing new patterning and fabrication process sequences that are conducive to large-format volume processing on state-of-the-art 200 mm wafer tools. Recent x-ray tests on 200 nm-period gratings patterned using e-beam-written masks and 4x projection lithography in conjunction with silicon pore focusing optics demonstrated R104R \approx 10^4 at 1.49 keV. Extending the grating depth from 4 μ\mum to 6 μ\mum is predicted to lead to significant improvements in diffraction efficiency and is part of our current efforts using a combination of deep reactive-ion etching and wet etching in KOH solution. We describe our recent progress in grating fabrication and report our latest diffraction efficiency and modeling results.Comment: 11 pages, 8 figures, submitted to Proc. SPIE 1144
    corecore