18 research outputs found

    Performance Testing of a Novel Off-plane Reflection Grating and Silicon Pore Optic Spectrograph at PANTER

    Full text link
    An X-ray spectrograph consisting of radially ruled off-plane reflection gratings and silicon pore optics was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The silicon pore optic (SPO) stack used is a test module for the Arcus small explorer mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. The gratings were aligned using an active alignment module which allows for the independent manipulation of subsequent gratings to a reference grating in three degrees of freedom using picomotor actuators which are controllable external to the test chamber. We report the line spread functions of the spectrograph and the actively aligned gratings, and plans for future development.Comment: Draft Version March 19, 201

    Re-testing the JET-X Flight Module No. 2 at the PANTER facility

    Full text link
    The Joint European X-ray Telescope (JET-X) was the core instrument of the Russian Spectrum-X-gamma space observatory. It consisted of two identical soft X-ray (0.3 - 10 keV) telescopes with focusing optical modules having a measured angular resolution of nearly 15 arcsec. Soon after the payload completion, the mission was cancelled and the two optical flight modules (FM) were brought to the Brera Astronomical Observatory where they had been manufactured. After 16 years of storage, we have utilized the JET-X FM2 to test at the PANTER X-ray facility a prototype of a novel X-ray polarimetric telescope, using a Gas Pixel Detector (GPD) with polarimetric capabilities in the focal plane of the FM2. The GPD was developed by a collaboration between INFN-Pisa and INAF-IAPS. In the first phase of the test campaign, we have re-tested the FM2 at PANTER to have an up-to-date characterization in terms of angular resolution and effective area, while in the second part of the test the GPD has been placed in the focal plane of the FM2. In this paper we report the results of the tests of the sole FM2, using an unpolarized X-ray source, comparing the results with the calibration done in 1996.Comment: Author's accepted manuscript posted to arXiv.org as permitted by Springer's Self-Archiving Policy. The final publication is available at http://rd.springer.com/article/10.1007%2Fs10686-013-9365-

    Performance Testing of a Large-Format Reflection Grating Prototype for a Suborbital Rocket Payload

    Full text link
    The soft X-ray grating spectrometer on board the Off-plane Grating Rocket Experiment (OGRE) hopes to achieve the highest resolution soft X-ray spectrum of an astrophysical object when it is launched via suborbital rocket. Paramount to the success of the spectrometer are the performance of the >250>250 reflection gratings populating its reflection grating assembly. To test current grating fabrication capabilities, a grating prototype for the payload was fabricated via electron-beam lithography at The Pennsylvania State University's Materials Research Institute and was subsequently tested for performance at Max Planck Institute for Extraterrestrial Physics' PANTER X-ray Test Facility. Bayesian modeling of the resulting data via Markov chain Monte Carlo (MCMC) sampling indicated that the grating achieved the OGRE single-grating resolution requirement of Rg(λ/Δλ)>4500R_{g}(\lambda/\Delta\lambda)>4500 at the 94% confidence level. The resulting RgR_g posterior probability distribution suggests that this confidence level is likely a conservative estimate though, since only a finite RgR_g parameter space was sampled and the model could not constrain the upper bound of RgR_g to less than infinity. Raytrace simulations of the system found that the observed data can be reproduced with a grating performing at Rg=∞R_g=\infty. It is therefore postulated that the behavior of the obtained RgR_g posterior probability distribution can be explained by a finite measurement limit of the system and not a finite limit on RgR_g. Implications of these results and improvements to the test setup are discussed.Comment: 25 pages, 16 figures, preprint of an article accepted for publication in the Journal of Astronomical Instrumentation \copyright 2020 [copyright World Scientific Publishing Company] [https://www.worldscientific.com/worldscinet/jai

    Calibration of X-ray telescope prototypes at PANTER

    Full text link
    We report a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, of the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany. The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering (IPOE) of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology. Prototype #1 with 3 layers and Prototype #2 with 21 layers were tested to assess the prototypes' on-axis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter (HPD) of 82" at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5-10 keV. The HPD and effective area are 111" and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.Comment: 11 pages, 9 figure

    Improving XMM-Newton EPIC pn data at low energies: method and application to the Vela SNR

    Full text link
    High quantum efficiency over a broad spectral range is one of the main properties of the EPIC pn camera on-board XMM-Newton. The quantum efficiency rises from ~75% at 0.2 keV to ~100% at 1 keV, stays close to 100% until 8 keV, and is still ~90% at 10 keV. The EPIC pn camera is attached to an X-ray telescope which has the highest collecting area currently available, in particular at low energies (more than 1400 cm2 between 0.1 and 2.0 keV). Thus, this instrument is very sensitive to the low-energy X-ray emission. However, X-ray data at energies below ~0.2 keV are considerably affected by detector effects, which become more and more important towards the lowest transmitted energies. In addition to that, pixels which have received incorrect offsets during the calculation of the offset map at the beginning of each observation, show up as bright patches in low-energy images. Here we describe a method which is not only capable of suppressing the contaminations found at low energies, but which also improves the data quality throughout the whole EPIC pn spectral range. This method is then applied to data from the Vela supernova remnant.Comment: Proc. SPIE Vol. 5488: Astronomical Telescopes and Instrumentation, UV - Gamma-Ray Space Telescope Systems, Eds. Guenther Hasinger and Martin J. Turner, 22-24 June 2004, Glasgow, Scotland United Kingdo

    Toward volume manufacturing of high-performance soft x-ray critical-angle transmission gratings

    Full text link
    High-resolution (R=λ/Δλ>2000R = \lambda /\Delta \lambda > 2000) x-ray absorption and emission line spectroscopy in the soft x-ray band is a crucial diagnostic for the exploration of the properties of ubiquitous warm and hot plasmas and their dynamics in the cosmic web, galaxy clusters, galaxy halos, intragalactic space, and star atmospheres. Soft x-ray grating spectroscopy with R>10,000R > 10{,}000 has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx design reference mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps ≈2000\approx 2000 large-area CAT gratings. We are developing new patterning and fabrication process sequences that are conducive to large-format volume processing on state-of-the-art 200 mm wafer tools. Recent x-ray tests on 200 nm-period gratings patterned using e-beam-written masks and 4x projection lithography in conjunction with silicon pore focusing optics demonstrated R≈104R \approx 10^4 at 1.49 keV. Extending the grating depth from 4 μ\mum to 6 μ\mum is predicted to lead to significant improvements in diffraction efficiency and is part of our current efforts using a combination of deep reactive-ion etching and wet etching in KOH solution. We describe our recent progress in grating fabrication and report our latest diffraction efficiency and modeling results.Comment: 11 pages, 8 figures, submitted to Proc. SPIE 1144

    Test results of the BEaTriX paraboloidal mirror at PANTER

    Get PDF
    Scope of this technical note is to report on the X-ray tests of the BEaTriX collimating mirror that have been carried out at the PANTER X-ray facility, before (May 4th-17th 2021) and after the coating with a Cr+Pt reflective layer at DTU, in the framework of the joint activities on optics for the ATHENA X-ray telescope. The tests planned before the deposition of the coating were aimed at confirming the mirror’s imaging quality expectations from the metrology tests, performed along with the polishing and finishing processes. Post-coating tests are oriented to the final qualification of the mirror and to ascertain that the mirror has maintained the focusing properties. Prior to coating, only tests at 1.49 keV are possible on the mirror. At this energy, PANTER can test the mirror in either diverging beam setup or making the beam parallel by means of a dedicated zone plate, canceling in this way the focus aberrations due to the finite distance of the source. After coating, in addition to the same tests at 1.49 keV, a test in diverging beam will be performed at 4.51 keV. The ZP cannot be used to collimate the 4.51 keV beam, but a comparison of the best focus at 1.49 keV and 4.51 keV will allow us to estimate the X-ray scattering that can be expected in the operation of the BEaTriX parabolic mirror. Simulations carried out from metrology on the uncoated mirror currently demonstrate a very low impact of the roughness on the mirror focusing performance
    corecore