21,202 research outputs found

    Direct sampling of complex landscapes at low temperatures: the three-dimensional +/-J Ising spin glass

    Full text link
    A method is presented, which allows to sample directly low-temperature configurations of glassy systems, like spin glasses. The basic idea is to generate ground states and low lying excited configurations using a heuristic algorithm. Then, with the help of microcanonical Monte Carlo simulations, more configurations are found, clusters of configurations are determined and entropies evaluated. Finally equilibrium configuration are randomly sampled with proper Gibbs-Boltzmann weights. The method is applied to three-dimensional Ising spin glasses with +- J interactions and temperatures T<=0.5. The low-temperature behavior of this model is characterized by evaluating different overlap quantities, exhibiting a complex low-energy landscape for T>0, while the T=0 behavior appears to be less complex.Comment: 9 pages, 7 figures, revtex (one sentence changed compared to v2

    Geometric Phases and Critical Phenomena in a Chain of Interacting Spins

    Get PDF
    The geometric phase can act as a signature for critical regions of interacting spin chains in the limit where the corresponding circuit in parameter space is shrunk to a point and the number of spins is extended to infinity; for finite circuit radii or finite spin chain lengths, the geometric phase is always trivial (a multiple of 2pi). In this work, by contrast, two related signatures of criticality are proposed which obey finite-size scaling and which circumvent the need for assuming any unphysical limits. They are based on the notion of the Bargmann invariant whose phase may be regarded as a discretized version of Berry's phase. As circuits are considered which are composed of a discrete, finite set of vertices in parameter space, they are able to pass directly through a critical point, rather than having to circumnavigate it. The proposed mechanism is shown to provide a diagnostic tool for criticality in the case of a given non-solvable one-dimensional spin chain with nearest-neighbour interactions in the presence of an external magnetic field.Comment: 7 Figure

    Non-resonant kaon pair production and medium effects in proton-nucleus collisions

    Full text link
    We study the non-resonant (non-ϕ\phi) production of K+K−K^+K^- pairs by protons of 2.83 GeV kinetic energy on C, Cu, Ag, and Au targets within the collision model, based on the nuclear spectral function, for incoherent primary proton--nucleon and secondary pion--nucleon creation processes. The model takes into account the initial proton and final kaon absorption, target nucleon binding and Fermi motion as well as nuclear mean-field potential effects on these processes. We calculate the antikaon momentum dependences of the exclusive absolute and relative K+K−K^+K^- pair yields in the acceptance window of the ANKE magnetic spectrometer, used in a recent experiment performed at COSY, within the different scenarios for the antikaon-nucleus optical potential. We demonstrate that the above observables are strongly sensitive to this potential. Therefore, they can be useful to help determine the K−K^- optical potential from the direct comparison of the results of our calculations with the data from the respective ANKE-at-COSY experiment. We also show that the pion--nucleon production channels dominate in the low-momentum K−K^-, K+K^+ production in the considered kinematics and, hence, they have to be accounted for in the analysis of these data.Comment: 19 page
    • …
    corecore