1,687 research outputs found

    Influence of Doubled CO2 on Ozone via Changes in the Brewer–Dobson Circulation

    Get PDF
    In this short note, the effect of enhanced circulation due to doubling CO2 on ozone is investigated. The difference of Brewer–Dobson circulation (BDC) between the doubled CO2 and control run from an idealized atmospheric general circulation model is added to the BDC climatology derived from National Centers for Environmental Prediction—Department of Energy Reanalysis 2 (NCEP2) from 1979 to 2002. Then it is used to drive the California Institute of Technology/Jet Propulsion Laboratory (Caltech/JPL) two-dimensional chemistry and transport model. The results reveal that the total ozone increases by 7 and 3.5 Dobson units (DU) in the high latitudes of the Northern and Southern Hemispheres, respectively, and decreases by 4 DU in the Tropics as a result of the increase in BDC associated with doubled CO2. If the change of eddy mixing coefficients after doubling CO2 is also considered, the total ozone will increase by 6.5 and 3 DU in the high latitudes of the Northern and Southern Hemispheres after combining both effects from the change in BDC and eddy mixing coefficients

    Dynamics of Annular Variability (Extended Abstract)

    Get PDF
    application/pdfçŽ€èŠéĄž (bulletin)623079 bytesdepartmental bulletin pape

    Stratosphere-troposphere evolution during polar vortex intensification

    Get PDF
    Stratosphere-troposphere evolution associated with polar vortex intensification (VI) events is examined during the Northern Hemisphere winter. The incipient stage of a VI event is marked by anomalously low wave activity and descending westerly anomalies over the depth of the polar stratosphere. Reduced poleward planetary wave heat flux occurs as the circumpolar wind becomes strongest and pressure anomalies penetrate toward the surface. Descending pressure patterns project strongly onto the positive state of the Northern Hemisphere Annular Mode (NAM). Concurrently, anomalous poleward momentum flux develops in the upper troposphere, and the related tropospheric mean meridional circulation maintains the attendant wind and temperature anomalies against surface drag. The gross behavior of the composite VI event is similar in shape but opposite in sign to that associated with sudden stratospheric warming events (SSWs). However, the descent of the wind and temperature anomalies over the VI life cycle is generally weaker and slower than its SSW counterpart preceding the maximum vortex anomaly. Similarly, after the maximum wind event, the weakening of the winds is faster than the strengthening of the winds after a SSW. This is because stratospheric wind reduction anomalies are produced by wave driving, which can be rapid, and increases in wind speed are associated with the radiative cooling of the polar cap, which happens more gradually. While the contributions of the anomalous momentum fluxes by the quasi-stationary and synoptic eddies are similar to SSWs, the much stronger anomalous momentum flux observed during VI can be attributed to the larger role of eddies with timescales between 15 and 40 days and of wave number 2 scale. Notable differences between VI and SSW appear in the tropical region. In particular, anomalous vortex intensification seems to occur preferentially during La Niña conditions
    • 

    corecore