2,857 research outputs found

    Tourette Syndrome Research Highlights from 2017 [version 1; referees: 3 approved]

    Get PDF
    This is the fourth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2017 relevant to Tourette syndrome and other tic disorders. The authors briefly summarize reports they consider most important or interesting. The highlights from 2018 article is being drafted on the Authorea online authoring platform, and readers are encouraged to add references or give feedback on our selections using the comments feature on that page. After the calendar year ends, the article is submitted as the annual update for the Tics collection on F1000Research

    Tourette syndrome research highlights from 2019

    Get PDF
    This is the sixth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2019 relevant to Tourette syndrome and other tic disorders. The highlights from 2020 is being drafted on the Authorea online authoring platform; readers are encouraged to add references or give feedback on our selections comments feature on this page. After the calendar year ends, this article is submitted as the annual update for the Tics collection F1000Research

    Benchmarking a semiclassical impurity solver for dynamical-mean-field theory: self-energies and magnetic transitions of the single-orbital Hubbard model

    Full text link
    An investigation is presented of the utility of semiclassical approximations for solving the quantum-impurity problems arising in the dynamical-mean-field approach to the correlated-electron models. The method is based on performing a exact numerical integral over the zero-Matsubara-frequency component of the spin part of a continuous Hubbard-Stratonovich field, along with a spin-field-dependent steepest descents treatment of the charge part. We test this method by applying it to one or two site approximations to the single band Hubbard model with different band structures, and comparing the results to quantum Monte-Carlo and simplified exact diagonalization calculations. The resulting electron self-energies, densities of states and magnetic transition temperatures show reasonable agreement with the quantum Monte-Carlo simulation over wide parameter ranges, suggesting that the semiclassical method is useful for obtaining a reasonable picture of the physics in situations where other techniques are too expensive.Comment: 14 pages, 15 figure

    Interpolation and harmonic majorants in big Hardy-Orlicz spaces

    Full text link
    Free interpolation in Hardy spaces is caracterized by the well-known Carleson condition. The result extends to Hardy-Orlicz spaces contained in the scale of classical Hardy spaces HpH^p, p>0p>0. For the Smirnov and the Nevanlinna classes, interpolating sequences have been characterized in a recent paper in terms of the existence of harmonic majorants (quasi-bounded in the case of the Smirnov class). Since the Smirnov class can be regarded as the union over all Hardy-Orlicz spaces associated with a so-called strongly convex function, it is natural to ask how the condition changes from the Carleson condition in classical Hardy spaces to harmonic majorants in the Smirnov class. The aim of this paper is to narrow down this gap from the Smirnov class to ``big'' Hardy-Orlicz spaces. More precisely, we characterize interpolating sequences for a class of Hardy-Orlicz spaces that carry an algebraic structure and that are strictly bigger than p>0Hp\bigcup_{p>0} H^p. It turns out that the interpolating sequences are again characterized by the existence of quasi-bounded majorants, but now the weights of the majorants have to be in suitable Orlicz spaces. The existence of harmonic majorants in such Orlicz spaces will also be discussed in the general situation. We finish the paper with an example of a separated Blaschke sequence that is interpolating for certain Hardy-Orlicz spaces without being interpolating for slightly smaller ones.Comment: 19 pages, 2 figure

    Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants

    Get PDF
    31 pagesInternational audienceWe consider a free interpolation problem in Nevanlinna and Smirnov classes and find a characterization of the corresponding interpolating sequences in terms of the existence of harmonic majorants of certain functions. We also consider the related problem of characterizing positive functions in the disk having a harmonic majorant. An answer is given in terms of a dual relation which involves positive measures in the disk with bounded Poisson balayage. We deduce necessary and sufficient geometric conditions, both expressed in terms of certain maximal functions

    Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

    Get PDF
    We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M_\odot. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.Comment: 13 pages, 12 figures, accepted by Ap

    Superconducting quantum simulator for topological order and the toric code

    Get PDF
    Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations and prospects for protecting stored quantum information against errors. Here we show that the Hamiltonian of the central model of this class of systems, the Toric Code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via Superconducting Quantum Interference Devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along non-contractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single qubit operations allow to create and propagate elementary excitations of the Toric Code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories

    European clinical guidelines for Tourette syndrome and other tic disorders:summary statement

    Get PDF
    In 2011 a working group of the European Society for the Study of Tourette syndrome (ESSTS) developed the first European Guidelines for Tourette syndrome (TS) published in the ECAP journal. After a decade ESSTS now presents updated guidelines, divided into four sections: Part I: assessment, Part II: psychological interventions, Part III: pharmacological treatment and Part IV: deep brain stimulation (DBS). In this paper, we summarise new developments described in the guidelines with respect to assessment and treatment of tics. Further, summary findings from a recent survey conducted amongst TS experts on these same topics are presented, as well as the first European patient representative statement on research. Finally, an updated decision tree is introduced providing a practical algorithm for the treatment of patients with TS. Interestingly, in the last decade there has been a significant shift in assessment and treatment of tics, with more emphasis on non-pharmacological treatments

    Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature

    Full text link
    We determine the spectra of a class of quantum spin chains of Temperley-Lieb type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ chain as a reference system. We consider open boundary conditions and in particular periodic boundary conditions. For both types of boundaries the identification with XXZ spectra is performed within isomorphic representations of the underlying Temperley-Lieb algebra. For open boundaries the spectra of these models differ from the spectrum of the associated XXZ chain only in the multiplicities of the eigenvalues. The periodic case is rather different. Here we show how the spectrum is obtained sector-wise from the spectra of globally twisted XXZ chains. As a spin-off, we obtain a compact formula for the degeneracy of the momentum operator eigenvalues. Our representation theoretical results allow for the study of the thermodynamics by establishing a TL-equivalence at finite temperature and finite field.Comment: 29 pages, LaTeX, two references added, redundant figures remove
    corecore