1,587 research outputs found

    Can a falling tree make a noise in two forests at the same time?

    Get PDF
    It is a commonplace to claim that quantum mechanics supports the old idea that a tree falling in a forest makes no sound unless there is a listener present. In fact, this conclusion is far from obvious. Furthermore, if a tunnelling particle is observed in the barrier region, it collapses to a state in which it is no longer tunnelling. Does this imply that while tunnelling, the particle can not have any physical effects? I argue that this is not the case, and moreover, speculate that it may be possible for a particle to have effects on two spacelike separate apparatuses simultaneously. I discuss the measurable consequences of such a feat, and speculate about possible statistical tests which could distinguish this view of quantum mechanics from a ``corpuscular'' one. Brief remarks are made about an experiment underway at Toronto to investigate these issues.Comment: 9 pp, Latex, 3 figs, to appear in Proc. Obsc. Unr. Conf.; Fig 2 postscript repaired on 26.10.9

    Negative time delay for wave reflection from a one-dimensional semi-harmonic well

    Full text link
    It is reported that the phase time of particles which are reflected by a one-dimensional semi-harmonic well includes a time delay term which is negative for definite intervals of the incoming energy. In this interval, the absolute value of the negative time delay becomes larger as the incident energy becomes smaller. The model is a rectangular well with zero potential energy at its right and a harmonic-like interaction at its left.Comment: 6 pages, 5 eps figures. Talk presented at the XXX Workshop on Geometric Methods in Physics, Bialowieza, Poland, 201

    Hidden Conformal Symmetry of the Reissner-Nordstr{\o}m Black Holes

    Full text link
    Motivated by recent progresses in the holographic descriptions of the Kerr and Reissner-Nordstr{\o}m (RN) black holes, we explore the hidden conformal symmetry of nonextremal uplifted 5D RN black hole by studying the near horizon wave equation of a massless scalar field propagating in this background. Similar to the Kerr black hole case, this hidden symmetry is broken by the periodicity of the associated angle coordinate in the background geometry, but the results somehow testify the dual CFT description of the nonextremal RN black holes. The duality is further supported by matching of the entropies and absorption cross sections calculated from both CFT and gravity sides.Comment: 14 pages, no figur

    Holography at an Extremal De Sitter Horizon

    Full text link
    Rotating maximal black holes in four-dimensional de Sitter space, for which the outer event horizon coincides with the cosmological horizon, have an infinite near-horizon region described by the rotating Nariai metric. We show that the asymptotic symmetry group at the spacelike future boundary of the near-horizon region contains a Virasoro algebra with a real, positive central charge. This is evidence that quantum gravity in a rotating Nariai background is dual to a two-dimensional Euclidean conformal field theory. These results are related to the Kerr/CFT correspondence for extremal black holes, but have two key differences: one of the black hole event horizons has been traded for the cosmological horizon, and the near-horizon geometry is a fiber over dS_2 rather than AdS_2.Comment: 15 page

    The RN/CFT Correspondence Revisited

    Full text link
    We reconsidered the quantum gravity description of the near horizon extremal Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS2_2/CFT1_1 correspondence. We found that, for pure electric case, the right moving central charge of dual 1D CFT is 6Q26 Q^2 which is different from the previous result 6Q36 Q^3 of left moving sector obtained by warped AdS3_3/CFT2_2 description. We discussed the discrepancy in these two approaches and examined novel properties of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include

    Holographic Dual of Linear Dilaton Black Hole in Einstein-Maxwell-Dilaton-Axion Gravity

    Full text link
    Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SL(2, R)L_LĂ—\timesSL(2, R)R_R Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.Comment: 15 pages, no figure, published versio

    Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes

    Full text link
    We consider the AdS3/CFT2\mathrm{AdS}_3/\mathrm{CFT}_2 description of Reissner-Nordstr{\o}m black holes by studying their uplifted counterparts in five dimensions. Assuming a natural size of the extra dimension, the near horizon geometries for the extremal limit are exactly AdS3Ă—S2\mathrm{AdS}_3 \times \mathrm{S}^2. We compute the scattering amplitude of a scalar field, with a mode near threshold of frequency and extra dimensional momentum, by a near extremal uplifted black hole. The absorption cross section agrees with the two point function of the CFT dual to the scalar field.Comment: reference added, improper statements corrected, 17 pages, no figure

    Kerr-CFT From Black-Hole Thermodynamics

    Full text link
    We analyze the near-horizon limit of a general black hole with two commuting killing vector fields in the limit of zero temperature. We use black hole thermodynamics methods to relate asymptotic charges of the complete spacetime to those obtained in the near-horizon limit. We then show that some diffeomorphisms do alter asymptotic charges of the full spacetime, even though they are defined in the near horizon limit and, therefore, count black hole states. We show that these conditions are essentially the same as considered in the Kerr/CFT corresponcence. From the algebra constructed from these diffeomorphisms, one can extract its central charge and then obtain the black hole entropy by use of Cardy's formula.Comment: 19 pages, JHEP3, no figures. V2: References added, small typos fixe

    Pulsar Results with the Fermi Large Area Telescope

    Full text link
    The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area Telescope (LAT) on Fermi has allowed the detailed study of their spectra and light curves. Twenty-four of these pulsars were discovered in blind searches of the gamma-ray data, and twenty-one of these are, at present, radio quiet, despite deep radio follow-up observations. In addition, millisecond pulsars have been confirmed as a class of gamma-ray emitters, both individually and collectively in globular clusters. Recently, radio searches in the direction of LAT sources with no likely counterparts have been highly productive, leading to the discovery of a large number of new millisecond pulsars. Taken together, these discoveries promise a great improvement in the understanding of the gamma-ray emission properties and Galactic population of pulsars. We summarize some of the results stemming from these newly-detected pulsars and their timing and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer
    • …
    corecore