1,973 research outputs found

    Cooper pairing near charged black holes

    Full text link
    We show that a quartic contact interaction between charged fermions can lead to Cooper pairing and a superconducting instability in the background of a charged asymptotically Anti-de Sitter black hole. For a massless fermion we obtain the zero mode analytically and compute the dependence of the critical temperature T_c on the charge of the fermion. The instability we find occurs at charges above a critical value, where the fermion dispersion relation near the Fermi surface is linear. The critical temperature goes to zero as the marginal Fermi liquid is approached, together with the density of states at the Fermi surface. Besides the charge, the critical temperature is controlled by a four point function of a fermionic operator in the dual strongly coupled field theory.Comment: 1+33 pages, 4 figure

    Basal paravian functional anatomy illuminated by high-detail body outline

    Get PDF
    Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit.published_or_final_versio

    The Spin of Holographic Electrons at Nonzero Density and Temperature

    Full text link
    We study the Green's function of a gauge invariant fermionic operator in a strongly coupled field theory at nonzero temperature and density using a dual gravity description. The gravity model contains a charged black hole in four dimensional anti-de Sitter space and probe charged fermions. In particular, we consider the effects of the spin of these probe fermions on the properties of the Green's function. There exists a spin-orbit coupling between the spin of an electron and the electric field of a Reissner-Nordstrom black hole. On the field theory side, this coupling leads to a Rashba like dispersion relation. We also study the effects of spin on the damping term in the dispersion relation by considering how the spin affects the placement of the fermionic quasinormal modes in the complex frequency plane in a WKB limit. An appendix contains some exact solutions of the Dirac equation in terms of Heun polynomials.Comment: 27 pages, 11 figures; v2: minor changes, published versio

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    Non-equilibrium Condensation Process in a Holographic Superconductor

    Full text link
    We study the non-equilibrium condensation process in a holographic superconductor. When the temperature T is smaller than a critical temperature T_c, there are two black hole solutions, the Reissner-Nordstrom-AdS black hole and a black hole with a scalar hair. In the boundary theory, they can be regarded as the supercooled normal phase and the superconducting phase, respectively. We consider perturbations on supercooled Reissner-Nordstrom-AdS black holes and study their non-linear time evolution to know about physical phenomena associated with rapidly-cooled superconductors. We find that, for T<T_c, the initial perturbations grow exponentially and, eventually, spacetimes approach the hairy black holes. We also clarify how the relaxation process from a far-from-equilibrium state proceeds in the boundary theory by observing the time dependence of the superconducting order parameter. Finally, we study the time evolution of event and apparent horizons and discuss their correspondence with the entropy of the boundary theory. Our result gives a first step toward the holographic understanding of the non-equilibrium process in superconductors.Comment: 20 pages, 7 figure

    Sum Rules from an Extra Dimension

    Full text link
    Using the gravity side of the AdS/CFT correspondence, we investigate the analytic properties of thermal retarded Green's functions for scalars, conserved currents, the stress tensor, and massless fermions. We provide some results concerning their large and small frequency behavior and their pole structure. From these results, it is straightforward to prove the validity of various sum rules on the field theory side of the duality. We introduce a novel contraction mapping we use to study the large frequency behavior of the Green's functions.Comment: v2: 23 pages (plus appendix), revised presentation, discussion of branch cuts moved to appendix, and some minor changes; v1: 24 pages (plus appendix

    Prediction of lethal and synthetically lethal knock-outs in regulatory networks

    Full text link
    The complex interactions involved in regulation of a cell's function are captured by its interaction graph. More often than not, detailed knowledge about enhancing or suppressive regulatory influences and cooperative effects is lacking and merely the presence or absence of directed interactions is known. Here we investigate to which extent such reduced information allows to forecast the effect of a knock-out or a combination of knock-outs. Specifically we ask in how far the lethality of eliminating nodes may be predicted by their network centrality, such as degree and betweenness, without knowing the function of the system. The function is taken as the ability to reproduce a fixed point under a discrete Boolean dynamics. We investigate two types of stochastically generated networks: fully random networks and structures grown with a mechanism of node duplication and subsequent divergence of interactions. On all networks we find that the out-degree is a good predictor of the lethality of a single node knock-out. For knock-outs of node pairs, the fraction of successors shared between the two knocked-out nodes (out-overlap) is a good predictor of synthetic lethality. Out-degree and out-overlap are locally defined and computationally simple centrality measures that provide a predictive power close to the optimal predictor.Comment: published version, 10 pages, 6 figures, 2 tables; supplement at http://www.bioinf.uni-leipzig.de/publications/supplements/11-01

    Pulsar Results with the Fermi Large Area Telescope

    Full text link
    The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area Telescope (LAT) on Fermi has allowed the detailed study of their spectra and light curves. Twenty-four of these pulsars were discovered in blind searches of the gamma-ray data, and twenty-one of these are, at present, radio quiet, despite deep radio follow-up observations. In addition, millisecond pulsars have been confirmed as a class of gamma-ray emitters, both individually and collectively in globular clusters. Recently, radio searches in the direction of LAT sources with no likely counterparts have been highly productive, leading to the discovery of a large number of new millisecond pulsars. Taken together, these discoveries promise a great improvement in the understanding of the gamma-ray emission properties and Galactic population of pulsars. We summarize some of the results stemming from these newly-detected pulsars and their timing and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer

    Boundary Conditions and Unitarity: the Maxwell-Chern-Simons System in AdS_3/CFT_2

    Get PDF
    We consider the holography of the Abelian Maxwell-Chern-Simons (MCS) system in Lorentzian three-dimensional asymptotically-AdS spacetimes, and discuss a broad class of boundary conditions consistent with conservation of the symplectic structure. As is well-known, the MCS theory contains a massive sector dual to a vector operator in the boundary theory, and a topological sector consisting of flat connections dual to U(1) chiral currents; the boundary conditions we examine include double-trace deformations in these two sectors, as well as a class of boundary conditions that mix the vector operators with the chiral currents. We carefully study the symplectic product of bulk modes and show that almost all such boundary conditions induce instabilities and/or ghost excitations, consistent with violations of unitarity bounds in the dual theory.Comment: 50+1 pages, 6 figures, PDFLaTeX; v2: added references, corrected typo

    On Exact Symmetries and Massless Vectors in Holographic Flows and other Flux Vacua

    Get PDF
    We analyze the isometries of Type IIB flux vacua based on the Papadopolous-Tseytlin ansatz and identify the related massless bulk vector fields. To this end we devise a general ansatz, valid in any flux compactification, for the fluctuations of the metric and p-forms that diagonalizes the coupled equations. We then illustrate the procedure in the simple case of holographic flows driven by the RR 3-form flux only. Specifically we study the fate of the isometries of the Maldacena-Nunez solution associated to wrapped D5-branes.Comment: 23 page
    • …
    corecore