12 research outputs found

    In Vivo Observation of Polypeptide Flux through the Bacterial Chaperonin System

    Get PDF
    AbstractThe quantitative contribution of chaperonin GroEL to protein folding in E. coli was analyzed. A diverse set of newly synthesized polypeptides, predominantly between 10–55 kDa, interacts with GroEL, accounting for 10%–15% of all cytoplasmic protein under normal growth conditions, and for 30% or more upon exposure to heat stress. Most proteins leave GroEL rapidly within 10–30 s. We distinguish three classes of substrate proteins: (I) proteins with a chaperonin-independent folding pathway; (II) proteins, more than 50% of total, with an intermediate chaperonin dependence for which normally only a small fraction transits GroEL; and (III) a set of highly chaperonin-dependent proteins, many of which dissociate slowly from GroEL and probably require sequestration of aggregation-sensitive intermediates within the GroEL cavity for successful folding

    Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23

    No full text
    The molecular chaperone Hsp90 binds and hydrolyses ATP, but how this ATPase activity regulates the interaction of Hsp90 with a polypeptide substrate is not yet understood. Using the glucocorticoid receptor ligand binding domain as a substrate, we show that dissociation of Hsp90 from bound polypeptide depends on the Hsp90 ATPase and is blocked by geldanamycin, a specific ATPase inhibitor. The co-chaperone p23 greatly stimulates Hsp90 substrate release with ATP, but not with the non-hydrolysable nucleotides ATPÎłS or AMP-PNP. Point mutants of Hsp90 with progressively lower ATPase rates are progressively slower in ATP-dependent substrate release but are still regulated by p23. In contrast, ATPase-inactive Hsp90 mutants release substrate poorly and show no p23 effect. These results outline an ATP-driven cycle of substrate binding and release for Hsp90 which differs from that of other ATP-driven chaperones. Conversion of the ATP state of Hsp90 to the ADP state through hydrolysis is required for efficient release of substrate polypeptide. p23 couples the ATPase activity to polypeptide dissociation and thus can function as a substrate release factor for Hsp90

    In vitro evidence that hsp90 contains two independent chaperone sites

    Get PDF
    AbstractHsp90 is an abundant and constitutively expressed stress protein and molecular chaperone. Here we dissected human hsp90 into three major domains to identify the putative chaperone site at which hsp90 binds unfolded polypeptide. Surprisingly, both the N-terminal and the C-terminal domain of hsp90 prevent the aggregation of denatured polypeptides. The chaperone activity of the N-domain is inhibited by geldanamycin, a specific inhibitor of hsp90-mediated protein refolding. While both domains suppress protein aggregation, only the C-domain binds an antigenic peptide derived from VSV G. Based on these results, hsp90 may be the first chaperone to contain two independent chaperone sites with differential specificity

    TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes

    No full text
    The role in protein folding of the eukaryotic chaperonin TRiC/CCT is only partially understood. Here, we show that a group of WD40 β-propeller proteins in the yeast cytosol interact transiently with TRiC upon synthesis and require the chaperonin to reach their native state. TRiC cooperates in the folding of these proteins with the ribosome-associated heat shock protein (Hsp)70 chaperones Ssb1/2p. In contrast, newly synthesized actin and tubulins, the major known client proteins of TRiC, are independent of Ssb1/2p and instead use the co-chaperone GimC/prefoldin for efficient transfer to the chaperonin. GimC can replace Ssb1/2p in the folding of WD40 substrates such as Cdc55p, but combined deletion of SSB and GIM genes results in loss of viability. These findings expand the substrate range of the eukaryotic chaperonin by a structurally defined class of proteins and demonstrate an essential role for upstream chaperones in TRiC-assisted folding

    Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system

    No full text
    In the eukaryotic cytosol, Hsp70 and Hsp90 cooperate with various co-chaperone proteins in the folding of a growing set of substrates, including the glucocorticoid receptor (GR). Here, we analyse the function of the co-chaperone Tpr2, which contains two chaperone-binding TPR domains and a DnaJ homologous J domain. In vivo, an increase or decrease in Tpr2 expression reduces GR activation, suggesting that Tpr2 is required at a narrowly defined expression level. As shown in vitro, Tpr2 recognizes both Hsp70 and Hsp90 through its TPR domains, and its J domain stimulates ATP hydrolysis and polypeptide binding by Hsp70. Furthermore, unlike other co-chaperones, Tpr2 induces ATP-independent dissociation of Hsp90 but not of Hsp70 from chaperone–substrate complexes. Excess Tpr2 inhibits the Hsp90-dependent folding of GR in cell lysates. We propose a novel mechanism in which Tpr2 mediates the retrograde transfer of substrates from Hsp90 onto Hsp70. At normal levels substoichiometric to Hsp90 and Hsp70, this activity optimizes the function of the multichaperone machinery
    corecore