64,018 research outputs found
Making the Invisible, Visible: RtI and Reading Comprehension
For the better part of a century the educational community has had increased focus on the importance of reading. The publication of Why Johnny Can\u27t Read and What You Can Do About It (Flesch, 1955) began the surge of effort to better understand the cognitive process of reading to further examine how educators can help children become better readers. Since this 1950\u27s publication, reading research grew and philosophies developed and subsequently changed. However, one thing remained the same: understanding what we read is critically important to becoming a critical thinker. Thus, reading comprehension research continued to boom and the educational community continues to seek ways in which reading comprehension instruction can be improved. (excerpt
Mixed population Minority Game with generalized strategies
We present a quantitative theory, based on crowd effects, for the market
volatility in a Minority Game played by a mixed population. Below a critical
concentration of generalized strategy players, we find that the volatility in
the crowded regime remains above the random coin-toss value regardless of the
"temperature" controlling strategy use. Our theory yields good agreement with
numerical simulations.Comment: Revtex file + 3 figure
Violence by clients towards female prostitutes in different work settings: questionnaire survey
No abstract available
Binary vapour—liquid equilibria of methanol with sulfolane. Tetraethylene glycol dimethyl ether and 18-crown-6 = Phasengleichgewichte in binären systemen von Methanol mit Sulfolan, Tetraethylenglycoldimethylether und 18-krone-6 Kronenether
The activity coefficients of methanol in sulfolane, tetraethylene glycol dimethyl ether (TEGDME) and 18-crown-6 under conditions of equilibrium have been determined in the temperature range 423–503 K and in the pressure range 0.28–3.5 MPa. A minimum in the activity coefficient was found for the methanol—TEGDME and methanol—18-crown-6 solutions
Search Heuristics, Case-Based Reasoning and Software Project Effort Prediction
This paper reports on the use of search techniques to help optimise a case-based reasoning (CBR) system for predicting software project effort. A major problem, common to ML techniques in general, has been dealing with large numbers of case features, some of which can hinder the prediction process. Unfortunately searching for the optimal feature subset is a combinatorial problem and therefore NP-hard. This paper examines the use of random searching, hill climbing and forward sequential selection (FSS) to tackle this problem. Results from examining a set of real software project data show that even random searching was better than using all available for features (average error 35.6% rather than 50.8%). Hill climbing and FSS both produced results substantially better than the random search (15.3 and 13.1% respectively), but FSS was more computationally efficient. Providing a description of the fitness landscape of a problem along with search results is a step towards the classification of search problems and their assignment to optimum search techniques. This paper attempts to describe the fitness landscape of this problem by combining the results from random searches and hill climbing, as well as using multi-dimensional scaling to aid visualisation. Amongst other findings, the visualisation results suggest that some form of heuristic-based initialisation might prove useful for this problem
Deterministic Dynamics in the Minority Game
The Minority Game (MG) behaves as a stochastically perturbed deterministic
system due to the coin-toss invoked to resolve tied strategies. Averaging over
this stochasticity yields a description of the MG's deterministic dynamics via
mapping equations for the strategy score and global information. The
strategy-score map contains both restoring-force and bias terms, whose
magnitudes depend on the game's quenched disorder. Approximate analytical
expressions are obtained and the effect of `market impact' discussed. The
global-information map represents a trajectory on a De Bruijn graph. For small
quenched disorder, an Eulerian trail represents a stable attractor. It is shown
analytically how anti-persistence arises. The response to perturbations and
different initial conditions are also discussed.Comment: 16 pages, 5 figure
Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems
The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM)
- …
