25 research outputs found

    Nucleon resonances in the fourth resonance region

    Full text link
    Nucleon and Δ\Delta resonances in the fourth resonance region are studied in a multichannel partial-wave analysis which includes nearly all available data on pion- and photo-induced reactions off protons. In the high-mass range, above 1850\,MeV, several alternative solutions yield a good description of the data. For these solutions, masses, widths, pole residues and photo-couplings are given. In particular, we find evidence for nucleon resonances with spin-parities JP=1/2+...7/2+J^P=1/2^+...7/2^+. For one set of solutions, there are four resonances forming naturally a spin-quartet of resonances with orbital angular momentum L=2 and spin S=3/2 coupling to J=1/2,...,7/2J=1/2,...,7/2. Just below 1.9\,GeV we find a spin doublet of resonances with JP=1/2−J^P=1/2^- and 3/2−3/2^-. Since a spin partner with JP=5/2−J^P=5/2^- is missing at this mass, the two resonances form a spin doublet which must have a symmetric orbital-angular-momentum wave function with L=1. For another set of solutions, the four positive-parity resonances are accompanied by mass-degenerate negative-parity partners -- as suggested by the conjecture of chiral symmetry restoration. The possibility of a JP=1/2+,3/2+J^P=1/2^+, 3/2^+ spin doublet at 1900\,MeV belonging to a 20-plet is discussed.Comment: 16 page

    Unilateral intracarotid amobarbital procedure for language lateralization.

    No full text
    Contains fulltext : 47978.pdf (publisher's version ) (Closed access)PURPOSE: The determination of language dominance as part of the presurgical workup of patients with pharmacoresistant epilepsies has experienced fundamental changes. With the introduction of noninvasive functional magnetic resonance imaging (fMRI), the number of patients receiving intracarotid amobarbital procedures (IAPs) for assessment of language dominance has decreased considerably. However, recent studies show that because of methodologic limitations of fMRI, IAP remains an important tool for language lateralization. The current study examines whether unilateral instead of bilateral IAP is an adequate way to apply IAP with reduced invasiveness. METHODS: We retrospectively examine the predictive value of unilateral IAP for the results of bilateral IAP based on a sample of 75 patients with various types of language dominance. Target parameters are the prediction of the language-dominant hemisphere and the identification of patients with atypical language dominance. For language assessment based on unilateral IAP, we introduce the measure hemispheric language capacity (HLC). RESULTS: Unilateral IAP performed on the side of intended surgery quantifies language capacity contralateral to the intended surgery. It detects atypical (bilateral or right) language dominance in the majority of patients. Experience with a separate series of 107 patients requiring presurgical language lateralization shows that in >80%, bilateral IAPs are redundant. CONCLUSIONS: Unilateral IAP is principally sufficient for language lateralization in the presurgical evaluation of patients with pharmacoresistant epilepsies. Necessity of bilateral IAP is restricted to few indications (e.g., callosotomy). In times of noninvasive language lateralization, we propose unilateral IAP as the method of choice for the verification of doubtful (bilateral) fMRI activation patterns
    corecore