973 research outputs found

    Inlet protein aggregation: a new mechanism for lubricating film formation with model synovial fluids.

    Get PDF
    This paper reports a fundamental study of lubricant film formation with model synovial fluid components (proteins) and bovine serum (BS). The objective was to investigate the role of proteins in the lubrication process. Film thickness was measured by optical interferometry in a ball-on-disc device (mean speed range of 2-60 mm/s). A commercial cobalt-chromium (CoCrMo) metal femoral head was used as the stationary component. The results for BS showed complex time-dependent behaviour, which was not representative of a simple fluid. After a few minutes sliding BS formed a thin adherent film of 10-20 nm, which was attributed to protein absorbance at the surface. This layer was augmented by a hydrodynamic film, which often increased at slow speeds. At the end of the test deposited surface layers of 20-50 nm were measured. Imaging of the contact showed that at slow speeds an apparent 'phase boundary' formed in the inlet just in front of the Hertzian zone. This was associated with the formation of a reservoir of high-viscosity material that periodically moved through the contact forming a much thicker film. The study shows that proteins play an important role in the film-forming process and current lubrication models do not capture these mechanisms

    Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.

    Get PDF
    The version on PEARL: Corrected proofs are Articles in Press that contain the authors' corrections. Final citation details, e.g., volume/issue number, publication year and page numbers, still need to be added and the text might change before final publication. Although corrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI , as follows: author(s), article title, journal (year), DOIExtensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74-207m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution

    Foraminifera of the Gault Clay Formation: An update

    Get PDF
    The foraminifera of the Gault Clay Formation (Middle and Upper Albian) are reviewed and their biostratigraphy compared to that of the standard ammonite-based zonation and the original bed numbers that are used by most workers on the formation. The change from an aragonitic assemblage in the Lower Gault to an assemblage dominated by agglutinated foraminifera in the Upper Gault is discussed in terms of changing palaeogeography and sea-level

    Evidence for the validity of Protatlanta sculpta (Gastropoda: Pterotracheoidea)

    Get PDF
    The genus Protatlanta is thought to be monotypic and is part of the Atlantidae, a family of shelled heteropods. These microscopic planktonic gastropods are poorly known, although research on their ecology is now increasing in response to concerns about the effects of ocean acidification on calcareous plankton. A correctly implemented taxonomy of the Atlantidae is fundamental to this progressing field of research and it requires much attention, particularly using integrated molecular and morphological techniques. Here we use DNA barcoding, shell morphology and biogeography to show that the genus Protatlanta includes at least two valid species in the Atlantic Ocean. Protatlanta souleyeti and Protatlanta sculpta were found to be separate species, with different shell morphology and separated by a K2P genetic distance of 19% sequence divergence at the Cytochrome Oxidase 1 gene. This evidence supports the revival of the species name P. sculpta, which was described by Issel in 1911, but has not been recognised as a valid species since 1915
    • ā€¦
    corecore