55 research outputs found
Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).This work was funded by the Medical Research Council (Clinical Research Training Fellowship to DP and grant G0801213 to M.K. Maini)
Model-Augmented Haptic Telemanipulation: Concept, Retrospective Overview, and Current Use Cases
Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator. Several technological methods that form the backbone of the MATM approach have already been successfully demonstrated in accomplished telerobotic space missions. On this basis, we have applied our approach in more recent research to applications in the fields of orbital robotics, telesurgery, caregiving, and telenavigation. In the course of this work, we have advanced specific aspects of the approach that were of particular importance for each respective application, especially shared autonomy, and haptic augmentation. This overview paper discusses the MATM approach in detail, presents the latest research results of the various technologies encompassed within this approach, provides a retrospective of DLR's telerobotic space missions, demonstrates the broad application potential of MATM based on the aforementioned use cases, and outlines lessons learned and open challenges
COVID-19-Related Thrombotic and Bleeding Events in Adults With Congenital Heart Disease.
BACKGROUND
Altered coagulation is a striking feature of COVID-19. Adult patients with congenital heart disease (ACHD) are prone to thromboembolic (TE) and bleeding complications.
OBJECTIVES
The purpose of this study was to investigate the prevalence and risk factors for COVID-19 TE/bleeding complications in ACHD patients.
METHODS
COVID-19-positive ACHD patients were included between May 2020 and November 2021. TE events included ischemic cerebrovascular accident, systemic and pulmonary embolism, deep venous thrombosis, myocardial infarction, and intracardiac thrombosis. Major bleeding included cases with hemoglobin drop >2Â g/dl, involvement of critical sites, or fatal bleeding. Severe infection was defined as need for intensive care unit, endotracheal intubation, renal replacement therapy, extracorporeal membrane oxygenation, or death. Patients with TE/bleeding were compared to those without events. Factors associated with TE/bleeding were determined using logistic regression.
RESULTS
Of 1,988 patients (age 32 [IQR: 25-42] years, 47% male, 59 ACHD centers), 30 (1.5%) had significant TE/bleeding: 12Â TE events, 12 major bleeds, and 6 with both TE and bleeding. Patients with TE/bleeding had higher in-hospital mortality compared to the remainder cohort (33% vs 1.7%; PÂ <Â 0.0001) and were in more advanced physiological stage (PÂ =Â 0.032) and NYHA functional class (PÂ =Â 0.01), had lower baseline oxygen saturation (PÂ =Â 0.0001), and more frequently had a history of atrial arrhythmia (PÂ <Â 0.0001), previous hospitalization for heart failure (PÂ <Â 0.0007), and were more likely hospitalized for COVID-19 (PÂ <Â 0.0001). By multivariable logistic regression, prior anticoagulation (OR: 4.92; 95%Â CI: 2-11.76; PÂ =Â 0.0003), cardiac injury (OR: 5.34; 95%Â CI: 1.98-14.76; PÂ =Â 0.0009), and severe COVID-19 (OR: 17.39; 95%Â CI: 6.67-45.32; PÂ <Â 0.0001) were independently associated with increased risk of TE/bleeding complications.
CONCLUSIONS
ACHD patients with TE/bleeding during COVID-19 infection have a higher in-hospital mortality from the illness. Risk of coagulation disorders is related to severe COVID-19, cardiac injury during infection, and use of anticoagulants
Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection.
The S-type lectin galectin-9 binds to the negative regulatory molecule Tim-3 on T cells and induces their apoptotic deletion or functional inactivation. We investigated whether galectin-9/Tim-3 interactions contribute to the deletion and exhaustion of the antiviral T cell response in chronic hepatitis B virus infection (CHB). We found Tim-3 to be expressed on a higher percentage of CD4 and CD8 T cells from patients with CHB than healthy controls (p<0.0001) and to be enriched on activated T cells and those infiltrating the HBV-infected liver. Direct ex vivo examination of virus-specific CD8 T cells binding HLA-A2/peptide multimers revealed that Tim-3 was more highly upregulated on HBV-specific CD8 T cells than CMV-specific CD8 T cells or the global CD8 T cell population in patients with CHB (p<0.001) or than on HBV-specific CD8 after resolution of infection. T cells expressing Tim-3 had an impaired ability to produce IFN-γ and TNF-α upon recognition of HBV-peptides and were susceptible to galectin-9-triggered cell death in vitro. Galectin-9 was detectable at increased concentrations in the sera of patients with active CHB-related liver inflammation (p = 0.02) and was strongly expressed by Kupffer cells within the liver sinusoidal network. Tim-3 blockade resulted in enhanced expansion of HBV-specific CD8 T cells able to produce cytokines and mediate cytotoxicity in vitro. Blocking PD-1 in combination with Tim-3 enhanced the number of patients from whom functional antiviral responses could be recovered and/or the strength of responses, indicating that these co-inhibitory molecules play a non-redundant role in driving T cell exhaustion in CHB. Patients taking antivirals able to potently suppress HBV viraemia continued to express Tim-3 on their T cells and respond to Tim-3 blockade. In summary, both Tim-3 and galectin-9 are increased in CHB and may contribute to the inhibition and deletion of T cells as they infiltrate the HBV-infected liver
The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells.
Optimal immune activation of naïve CD8 T cells requires signal 1 mediated by the T cell receptor, signal 2 mediated by co-stimulation and signal 3 provided by pro-inflammatory cytokines. However, the potential for signal 3 cytokines to rescue anti-viral responses in functionally exhausted T cells has not been defined. We investigated the effect of using third signal cytokines IL-12 or IFN-α to rescue the exhausted CD8 T cell response characteristic of patients persistently infected with hepatitis B virus (HBV). We found that IL-12, but not IFN-α, potently augmented the capacity of HBV-specific CD8 T cells to produce effector cytokines upon stimulation by cognate antigen. Functional recovery mediated by IL-12 was accompanied by down-modulation of the hallmark inhibitory receptor PD-1 and an increase in the transcription factor T-bet. PD-1 down-regulation was observed in HBV but not CMV-specific T cells, in line with our finding that the highly functional CMV response was not further enhanced by IL-12. IL-12 enhanced a number of characteristics of HBV-specific T cells important for viral control: cytotoxicity, polyfunctionality and multispecificity. Furthermore, IL-12 significantly decreased the pro-apoptotic molecule Bim, which is capable of mediating premature attrition of HBV-specific CD8 T cells. Combining IL-12 with blockade of the PD-1 pathway further increased CD8 functionality in the majority of patients. These data provide new insights into the distinct signalling requirements of exhausted T cells and the potential to recover responses optimised to control persistent viral infections
- …