1 research outputs found
Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS<sub>2</sub> Heterostructures
Large-area
two-dimensional (2D) heterojunctions are promising building
blocks of 2D circuits. Understanding their intriguing electrostatics
is pivotal but largely hindered by the lack of direct observations.
Here graphene–WS<sub>2</sub> heterojunctions are prepared over
large areas using a seedless ambient-pressure chemical vapor deposition
technique. Kelvin probe force microscopy, photoluminescence spectroscopy,
and scanning tunneling microscopy characterize the doping in graphene–WS<sub>2</sub> heterojunctions as-grown on sapphire and transferred to SiO<sub>2</sub> with and without thermal annealing. Both p–n and n–n
junctions are observed, and a flat-band condition (zero Schottky barrier
height) is found for lightly n-doped WS<sub>2</sub>, promising low-resistance
ohmic contacts. This indicates a more favorable band alignment for
graphene–WS<sub>2</sub> than has been predicted, likely explaining
the low barriers observed in transport experiments on similar heterojunctions.
Electrostatic modeling demonstrates that the large depletion width
of the graphene–WS<sub>2</sub> junction reflects the electrostatics
of the one-dimensional junction between two-dimensional materials