14 research outputs found

    Differences in the Tumor Microenvironment between African-American and European-American Breast Cancer Patients

    Get PDF
    Background: African-American breast cancer patients experience higher mortality rates than European-American patients despite having a lower incidence of the disease. We tested the hypothesis that intrinsic differences in the tumor biology may contribute to this cancer health disparity. Methods and Results: Using laser capture microdissection, we examined genome-wide mRNA expression specific to tumor epithelium and tumor stroma in 18 African-American and 17 European-American patients. Numerous genes were differentially expressed between these two patient groups and a two-gene signature in the tumor epithelium distinguished between them. To identify the biological processes in tumors that are different by race/ethnicity, Gene Ontology and disease association analyses were performed. Several biological processes were identified which may contribute to enhanced disease aggressiveness in African-American patients, including angiogenesis and chemotaxis. African-American tumors also contained a prominent interferon signature. The role of angiogenesis in the tumor biology of African-American

    Nitric oxide synthase and breast cancer: role of TIMP-1 in NO-mediated Akt activation.

    Get PDF
    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation

    NO modulation of TIMP-1 protein levels.

    No full text
    <p>A) NO does not significantly effect steady state TIMP-1 mRNA as shown by real time PCR (n = 5). B) NO modulates TIMP-1 protein in the media from MDA-MB-231 breast cancer cells as shown by ELISA assay. The results are presented as mean+/−SEM of n = 4 samples. C) NO modulates TIMP-1 protein in the media from human fibroblasts as shown by western blot.</p

    Expression of TIMP-1 and CD63 in human breast tumors.

    No full text
    <p>Shown is immunohistochemical staining for TIMP-1 (A–C) and CD63 (D–F). (A) Strong staining of TIMP-1 is shown in the tumor epithelial cells. The surrounding tissue consisting of stromal cells and adipocytes is negative for TIMP-1. (B) Moderate staining of TIMP-1 in tumor epithelial cells is shown in the lower center and to the right. Normal epithelial cells are negative for TIMP-1 (upper left corner). (C) Normal epithelial cells in surrounding non-tumor tissue of an invasive breast tumor are negative for TIMP-1. (D) Strong staining of CD63 in the tumor epithelium. The surrounding tissue consisting of stromal cells and a benign breast duct is mostly negative for CD63. (E) Moderate staining of CD63 in tumor epithelial cells (center). (F) Moderate to strong staining of CD63 in tumor epithelial cells (lower and upper center). Normal epithelial cells to the left and stromal cells are negative for CD63. Magnification: 100× for A, C, D, F; 200× for B and E. Counterstain hematoxylin.</p

    TIMP-1 immunoprecipitation of DETA/NO treated MDA-MB-231 cell lysates.

    No full text
    <p>A) Western blot showing TIMP-1 protein expression in the lysates of DETA/NO treated MDA-MB-231 breast cancer cells. B) TIMP-1 immunoprecipitated from DETA/NO treated MDA-MB-231 cells and immunoblotted for 3′NT and CD63 demonstrates enhanced TIMP-1 tyrosine nitration and CD63 co-immunoprecipitation associated with DETA/NO exposure.</p

    Western blots demonstrate the requirement of TIMP-1 for NO-induced Akt phosphorylation in MDA-MB-231 breast cancer cells.

    No full text
    <p>A) Suppression of TIMP-1 protein translation using anti-sense TIMP-1 morpholino through 72 hr. B) TIMP-1 suppression (TIMP-1<sub>kd</sub>) abolishes NO-induced Akt phosphorylation and reduces the extent of NO-mediated phosphorylation of Akt downstream pro-apoptotic target BAD. The cells were incubated with TIMP-1 morpholino as described in the methods section, serum starved, and then treated with increasing concentrations of DETA/NO for 24 hr. The western blots shown were stripped and reblotted for total Akt are representative of two independent experiments. C–D) Densitometry measurements of pAkt (C) and pBAD (D) relative to total Akt loading control were plotted vs. DETA/NO concentration. Linear regression pAkt/total Akt: control, r<sup>2</sup> = 0.974, y-intercept = 90.40+/−10.35, slope = 0.2187+/−0.021 p = 0.0018; TIMP-1 kd, r<sup>2</sup> = 0.573, y-intercept = 76.04+/−14.61, slope = 0.0583+/−0.029, p = 0.1381. Linear regression pBAD/total Akt: control, r<sup>2</sup> = 0.988, y-intercept = 91.45+/−29.29, slope = 0.9053+/−0.058, p = 0.0006; TIMP-1 kd, r<sup>2</sup> = 0.953, y-intercept = 44.60+/−24.30, slope = 0.3747+/−0.048, p = 0.0027.</p
    corecore