19 research outputs found

    Shear thickening and history-dependent rheology of monodisperse suspensions with finite inertia via an immersed boundary lattice Boltzmann method

    Get PDF
    This the pre-print of an article submitted to International Journal of Multiphase Flow,Volume 125, April 2020, 103205. The final published version is available at http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.103205Three-dimensional direct numerical simulations of dense suspensions of monodisperse spherical particles in simple shear flow have been performed at particle Reynolds numbers between 0.1 and 0.6. The particles translate and rotate under the influence of the applied shear. The lattice Boltzmann method was used to solve the flow of the interstitial Newtonian liquid, and an immersed boundary method was used to enforce the no-slip boundary condition at the surface of each particle. Short range spring forces were applied between colliding particles over sub-grid scale distances to prevent overlap. We computed the relative apparent viscosity for solids volume fractions up to 38% for several shear rates and particle concentrations and discuss the effects of these variables on particle rotation and cluster formations. The apparent viscosities increase with increasing particle Reynolds number (shear thickening) and solids fraction. As long as the particle Reynolds number is low (0.1), the computed viscosities are in good agreement with experimental measurements, as well as theoretical and empirical equations. For higher Reynolds numbers, we find much higher viscosities, which we relate to slower particle rotation and clustering. Simulations with a sudden change in shear rate also reveal a history (or hysteresis) effect due to the formation of clusters. We quantify the changes in particle rotation and clustering as a function of the Reynolds number and volume fraction

    Mixing in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking

    Get PDF
    Mixing between shallow cumulus clouds and their environment is studied using large-eddy simulations. The origin of in-cloud air is studied by two distinct methods: 1) by analyzing conserved variable mixing diagrams (Paluch diagrams) and 2) by tracing back cloud-air parcels represented by massless Lagrangian particles that follow the flow. The obtained Paluch diagrams are found to be similar to many results in the literature, but the source of entrained air found by particle tracking deviates from the source inferred from the Paluch analysis. Whereas the classical Paluch analysis seems to provide some evidence for cloud-top mixing, particle tracking shows that virtually all mixing occurs laterally. Particle trajectories averaged over the entire cloud ensemble also clearly indicate the absence of significant cloud-top mixing in shallow cumulus clouds

    Mixing in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking

    Get PDF
    Mixing between shallow cumulus clouds and their environment is studied using large-eddy simulations. The origin of in-cloud air is studied by two distinct methods: 1) by analyzing conserved variable mixing diagrams (Paluch diagrams) and 2) by tracing back cloud-air parcels represented by massless Lagrangian particles that follow the flow. The obtained Paluch diagrams are found to be similar to many results in the literature, but the source of entrained air found by particle tracking deviates from the source inferred from the Paluch analysis. Whereas the classical Paluch analysis seems to provide some evidence for cloud-top mixing, particle tracking shows that virtually all mixing occurs laterally. Particle trajectories averaged over the entire cloud ensemble also clearly indicate the absence of significant cloud-top mixing in shallow cumulus clouds

    Observational Validation of The Compensating Mass Flux Through The Shell Around Cumulus Clouds

    Get PDF
    The existence of a subsiding shell around cumulus clouds has been observed before in several aircraft measurement campaigns. Recent results from large-eddy simulations (LES) showed that the downward mass flux through the shell compensates for a significant fraction of the upward mass flux through the cloud. In this study, aeroplane measurements from the Rain In Cumulus over the Ocean (RICO) field campaign are used to verify the existence of this compensating mass flux. Just as in the LES results, the in-shell downward mass flux is found to be significant. However, a few differences were found in comparison with the LES results; most of them were explained by taking into account the difference between the two-dimensional slabs in LES and the one-dimensional lines from aeroplane observations

    A Statistical Approach to The Life Cycle Analysis of Cumulus Clouds Selected in A Virtual Reality Environment

    Get PDF
    In this study, a new method is developed to investigate the entire life cycle of shallow cumuli in large eddy simulations. Although trained observers have no problem in distinguishing the different life stages of a cloud, this process proves difficult to automate, because cloud-splitting and cloud-merging events complicate the distinction between a single system divided in several cloudy parts and two independent systems that collided. Because the human perception is well equipped to capture and to make sense of these time-dependent three-dimensional features, a combination of automated constraints and human inspection in a three-dimensional virtual reality environment is used to select clouds that are exemplary in their behavior throughout their entire life span. Three specific cases (ARM, BOMEX, and BOMEX without large-scale forcings) are analyzed in this way, and the considerable number of selected clouds warrants reliable statistics of cloud properties conditioned on the phase in their life cycle. The most dominant feature in this statistical life cycle analysis is the pulsating growth that is present throughout the entire lifetime of the cloud, independent of the case and of the large-scale forcings. The pulses are a self-sustained phenomenon, driven by a balance between buoyancy and horizontal convergence of dry air. The convective inhibition just above the cloud base plays a crucial role as a barrier for the cloud to overcome in its infancy stage, and as a buffer region later on, ensuring a steady supply of buoyancy into the cloud

    The Limerick bubbly flow rig: design, performance, hold-up and mixing pattern

    Get PDF
    peer-reviewedAs Euler-Euler CFD simulations of bubbly flows suffer from uncertainties due to the many underpinning models, there is an obvious need of accurate experimental data for validation. With this in mind, a new bubbly flow test rig was built to be operated with and without liquid co-flow, with bubble size as uniform as possible in the range 4–7 mm, and with a very even horizontal bubble distribution. We designed the gas sparging system such that we can also produce an essentially bi-modal bubble size distribution. The column consists of two square sections to allow for studying the mixing of two originally separated bubbly flows with either the same or a different bubble size. The bubbles are produced from 2 × 196 needles, bubble sizes are determined with high-speed imaging and with a simple acoustical method, overall volume fractions in the column by means of air chamber pressure measurements. Overall volume fractions are presented as a function of gas and liquid flow rates, with slip velocity mostly increasing with increasing void fraction. First results are obtained on (a) producing bi-model bubble size distributions and the pertinent volume fractions in the column, and (b) flow patterns in the case of unequal aeration

    The Limerick bubbly flow rig: design, performance, hold-up and mixing pattern

    No full text
    As Euler-Euler CFD simulations of bubbly flows suffer from uncertainties due to the many underpinning models, there is an obvious need of accurate experimental data for validation. With this in mind, a new bubbly flow test rig was built to be operated with and without liquid co-flow, with bubble size as uniform as possible in the range 4–7 mm, and with a very even horizontal bubble distribution. We designed the gas sparging system such that we can also produce an essentially bi-modal bubble size distribution. The column consists of two square sections to allow for studying the mixing of two originally separated bubbly flows with either the same or a different bubble size. The bubbles are produced from 2 × 196 needles, bubble sizes are determined with high-speed imaging and with a simple acoustical method, overall volume fractions in the column by means of air chamber pressure measurements. Overall volume fractions are presented as a function of gas and liquid flow rates, with slip velocity mostly increasing with increasing void fraction. First results are obtained on (a) producing bi-model bubble size distributions and the pertinent volume fractions in the column, and (b) flow patterns in the case of unequal aeration

    The effect of liquid co-flow on gas fractions, bubble velocities and chord lengths in bubbly flows. Part I: uniform gas sparging and liquid co-flow

    Get PDF
    Unique experiments were performed in a homogeneously sparged rectangular 400 × 200 × 2630 mm (W × D × H) bubble column with and without liquid co-flow. Bubbles in the range 4–7 mm were produced by needle spargers, which resulted in a very uniform bubble size. Dual-tip optical fibre probes were used to measure horizontal profiles of gas fractions, bubble velocities and bubble chord lengths for superficial gas velocities Usg in the range 0.63–6.25 cm/s and superficial liquid velocities Usl up to 20 cm/s. Images of the bubble column were captured and a Bubble Image Velocimetry technique was adopted to calculate bubble (parcel) velocities. For low gas fractions, when a homogeneous flow regime occurred, both methods agreed very well and the optical fibre probes were found to be rather accurate for our bubbles. A liquid co-flow was found to have a calming effect and to stabilize a homogeneous bubbly flow regime, with less spatial variation in gas fractions and bubble velocities. Bubble chord lengths were almost normally distributed and do not exhibit the theoretical triangular probability density functions. The mean cord lengths were in the range 1.9–3.5 mm and found to increase with Usg and to decrease slightly with increasing Usl, while a liquid co-flow significantly reduced the standard deviation of the chord length distributio

    Experimental investigation on the bubble formation from needles with and without liquid co-flow

    No full text
    We report experiments on bubble formation from needles with and without liquid co-flow, carried out with needles in the range of 0.79 < dn < 2.06 mm, for gas flow rates up to 4.5 cm3/s per needle, and with liquid co-flow velocities up to 0.4 m/s. Bubble sizes and frequencies were obtained by means measuring an acoustic signal in the pressurized chamber upstream, which is validated by high-speed imaging analysis. Bubble contours, bubble growth curves and time return plots were obtained to analyse the bubble formation process. Different bubbling regimes are distinguished and a novel dimensionless pressure ratio is proposed to forecast the emergence of weeping and the transition from constant flow rate bubbling to constant chamber pressure bubbling. A single correlation for the non-dimensional bubble size with and without liquid co-flow was developed and validated with the experimental data obtained in the present study
    corecore