39,117 research outputs found
The Abrikosov Flux Lattice in Planar Crystals of YBaCuO
Anisotropic London Theory is used to predict the Abriskosv flux lattice in
planar crystals of YBaCuO. By taking into account the orientation of the flux
lattice as a function of applied field it is shown that the vortex chain state
is observed in Bitter pattern experiments.Comment: 17 pages, Late
A model for time-dependent grain boundary diffusion of ions and electrons through a film or scale, with an application to alumina
A model for ionic and electronic grain boundary transport through thin films,
scales or membranes with columnar grain structure is introduced. The grain
structure is idealized as a lattice of identical hexagonal cells - a honeycomb
pattern. Reactions with the environment constitute the boundary conditions and
drive the transport between the surfaces. Time-dependent simulations solving
the Poisson equation self-consistently with the Nernst-Planck flux equations
for the mobile species are performed. In the resulting Poisson-Nernst-Planck
system of equations, the electrostatic potential is obtained from the Poisson
equation in its integral form by summation. The model is used to interpret
alumina membrane oxygen permeation experiments, in which different oxygen gas
pressures are applied at opposite membrane surfaces and the resulting flux of
oxygen molecules through the membrane is measured. Simulation results involving
four mobile species, charged aluminum and oxygen vacancies, electrons, and
holes, provide a complete description of the measurements and insight into the
microscopic processes underpinning the oxygen permeation of the membrane. Most
notably, the hypothesized transition between p-type and n-type ionic
conductivity of the alumina grain boundaries as a function of the applied
oxygen gas pressure is observed in the simulations. The range of validity of a
simple analytic model for the oxygen permeation rate, similar to the Wagner
theory of metal oxidation, is quantified by comparison to the numeric
simulations. The three-dimensional model we develop here is readily adaptable
to problems such as transport in a solid state electrode, or corrosion scale
growth
Spin-density wave Fermi surface reconstruction in underdoped YBa2Cu3O6+x
We consider the reconstruction expected for the Fermi surface of underdoped
YBa2Cu3O6+x in the case of a collinear spin-density wave with a characteristic
vector Q=(pi[1+/-2 delta],pi), assuming an incommensurability delta~0.06
similar to that found in recent neutron scattering experiments. A Fermi surface
possibly consistent with the multiple observed quantum oscillation frequencies
is obtained. From the low band masses expected using this model as compared
with experiment, a uniform enhancement of the quasiparticle effective mass over
the Fermi surface by a factor of ~7 is indicated. Further predictions of the
Fermi surface topology are made, which may potentially be tested by experiment
to indicate the relevance of this model to underdoped YBa2Cu3O6+x.Comment:
An unexpected oxidation : NaK5Cl2(S2O6)2 revisited
Acknowledgements We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection.Peer reviewedPublisher PD
Probabilistic models of planetary contamination
Likely fundamental inadequacies in the model of planetary contamination advanced by Sagan and Coleman are discussed. It is shown that a relatively minor modification of the basic Sagan-Coleman formula yields approximations that are generally adequate with data in the range of interest. This approximation formula differs from the original Sagan-Coleman version only through an initial conditioning on landing outcome. It always yields an upper (conservative) bound for the total probability of contamination, this appealing feature is lost if the conditioning on landing outcome is deleted
Heisenberg exchange in magnetic monoxides
The superexchange intertacion in transition-metal oxides, proposed initially
by Anderson in 1950, is treated using contemporary tight-binding theory and
existing parameters. We find also a direct exchange for nearest-neighbor metal
ions, larger by a factor of order five than the superexchange. This direct
exchange arises from Vddm coupling, rather than overlap of atomic charge
densities, a small overlap exchange contribution which we also estimate. For
FeO and CoO there is also an important negative contribution, related to Stoner
ferromagnetism, from the partially filled minority-spin band which broadens
when ionic spins are aligned. The corresponding J1 and J2 parameters are
calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and
the Curie-Weiss temperatures, show appropriate trends, and give a reasonable
account of their volume dependences. For MnO the predicted value for the
magnetic susceptibility at the Neel temperature and the crystal distortion
arising from the antiferromagnetic transition were reasonably well given.
Application to CuO2 planes in the cuprates gives J=1220oK, compared to an
experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental
230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized
J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory
(1/28 revision
Ab initio Wannier-function-based many-body approach to Born charge of crystalline insulators
In this paper we present an approach aimed at performing many-body
calculations of Born-effective charges of crystalline insulators, by including
the electron-correlation effects. The scheme is implemented entirely in the
real space, using Wannier-functions as single-particle orbitals. Correlation
effects are computed by including virtual excitations from the Hartree-Fock
mean field, and the excitations are organized as per a Bethe-Goldstone-like
many-body hierarchy. The results of our calculations suggest that the approach
presented here is promising.Comment: 5 pages, to appear in Phys. Rev. B. (Rapid Comm., Dec 15, 2004
Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator
We study the effect of uniform uniaxial strain on the ground state electronic
configuration of a thin film manganite. Our model Hamiltonian includes the
double-exchange, the Jahn-Teller electron-lattice coupling, and the
antiferromagnetic superexchange. The strain arises due to the lattice mismatch
between an insulating substrate and a manganite which produces a tetragonal
distortion. This is included in the model via a modification of the hopping
amplitude and the introduction of an energy splitting between the Mn e_g
levels. We analyze the bulk properties of half-doped manganites and the
electronic reconstruction at the interface between a ferromagnetic and metallic
manganite and the insulating substrate. The strain drives an orbital selection
modifying the electronic properties and the magnetic ordering of manganites and
their interfaces.Comment: 8 pages, 8 figure
Latent Process Heterogeneity in Discounting Behavior
We show that observed choices in discounting experiments are consistent with roughly one-half of the subjects using exponential discounting and one-half using quasi-hyperbolic discounting. We characterize the latent data generating process using a mixture model which allows different subjects to behave consistently with each model. Our results have substantive implications for the assumptions made about discounting behavior, and also have significant methodological implications for the manner in which we evaluate alternative models when there may be complementary data generating processes.
Gap opening in graphene by simple periodic inhomogeneous strain
Using ab-initio methods, we show that the uniform deformation either leaves
graphene (semi)metallic or opens up a small gap yet only beyond the mechanical
breaking point of the graphene, contrary to claims in the literature based on
tight-binding (TB) calculations. It is possible, however, to open up a global
gap by a sine-like one-dimensional inhomogeneous deformation applied along any
direction but the armchair one, with the largest gap for the corrugation along
the zigzag direction (~0.5 eV) without any electrostatic gating. The gap
opening has a threshold character with very sharp rise when the ratio of the
amplitude A and the period of the sine wave deformation lambda exceeds
(A/lambda)_c ~0.1 and the inversion symmetry is preserved, while it is
threshold-less when the symmetry is broken, in contrast with TB-derived
pseudo-magnetic field models.Comment: 6 pages, 6 figures; (v2) added figures illustrating opening gap in
Graphene mesh on BN, expanded analysis illustrating absence of
pseudo-magnetic fields in deformed Graphen
- …