39,117 research outputs found

    The Abrikosov Flux Lattice in Planar Crystals of YBaCuO

    Full text link
    Anisotropic London Theory is used to predict the Abriskosv flux lattice in planar crystals of YBaCuO. By taking into account the orientation of the flux lattice as a function of applied field it is shown that the vortex chain state is observed in Bitter pattern experiments.Comment: 17 pages, Late

    A model for time-dependent grain boundary diffusion of ions and electrons through a film or scale, with an application to alumina

    Full text link
    A model for ionic and electronic grain boundary transport through thin films, scales or membranes with columnar grain structure is introduced. The grain structure is idealized as a lattice of identical hexagonal cells - a honeycomb pattern. Reactions with the environment constitute the boundary conditions and drive the transport between the surfaces. Time-dependent simulations solving the Poisson equation self-consistently with the Nernst-Planck flux equations for the mobile species are performed. In the resulting Poisson-Nernst-Planck system of equations, the electrostatic potential is obtained from the Poisson equation in its integral form by summation. The model is used to interpret alumina membrane oxygen permeation experiments, in which different oxygen gas pressures are applied at opposite membrane surfaces and the resulting flux of oxygen molecules through the membrane is measured. Simulation results involving four mobile species, charged aluminum and oxygen vacancies, electrons, and holes, provide a complete description of the measurements and insight into the microscopic processes underpinning the oxygen permeation of the membrane. Most notably, the hypothesized transition between p-type and n-type ionic conductivity of the alumina grain boundaries as a function of the applied oxygen gas pressure is observed in the simulations. The range of validity of a simple analytic model for the oxygen permeation rate, similar to the Wagner theory of metal oxidation, is quantified by comparison to the numeric simulations. The three-dimensional model we develop here is readily adaptable to problems such as transport in a solid state electrode, or corrosion scale growth

    Spin-density wave Fermi surface reconstruction in underdoped YBa2Cu3O6+x

    Full text link
    We consider the reconstruction expected for the Fermi surface of underdoped YBa2Cu3O6+x in the case of a collinear spin-density wave with a characteristic vector Q=(pi[1+/-2 delta],pi), assuming an incommensurability delta~0.06 similar to that found in recent neutron scattering experiments. A Fermi surface possibly consistent with the multiple observed quantum oscillation frequencies is obtained. From the low band masses expected using this model as compared with experiment, a uniform enhancement of the quasiparticle effective mass over the Fermi surface by a factor of ~7 is indicated. Further predictions of the Fermi surface topology are made, which may potentially be tested by experiment to indicate the relevance of this model to underdoped YBa2Cu3O6+x.Comment:

    An unexpected oxidation : NaK5Cl2(S2O6)2 revisited

    Get PDF
    Acknowledgements We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection.Peer reviewedPublisher PD

    Probabilistic models of planetary contamination

    Get PDF
    Likely fundamental inadequacies in the model of planetary contamination advanced by Sagan and Coleman are discussed. It is shown that a relatively minor modification of the basic Sagan-Coleman formula yields approximations that are generally adequate with data in the range of interest. This approximation formula differs from the original Sagan-Coleman version only through an initial conditioning on landing outcome. It always yields an upper (conservative) bound for the total probability of contamination, this appealing feature is lost if the conditioning on landing outcome is deleted

    Heisenberg exchange in magnetic monoxides

    Full text link
    The superexchange intertacion in transition-metal oxides, proposed initially by Anderson in 1950, is treated using contemporary tight-binding theory and existing parameters. We find also a direct exchange for nearest-neighbor metal ions, larger by a factor of order five than the superexchange. This direct exchange arises from Vddm coupling, rather than overlap of atomic charge densities, a small overlap exchange contribution which we also estimate. For FeO and CoO there is also an important negative contribution, related to Stoner ferromagnetism, from the partially filled minority-spin band which broadens when ionic spins are aligned. The corresponding J1 and J2 parameters are calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and the Curie-Weiss temperatures, show appropriate trends, and give a reasonable account of their volume dependences. For MnO the predicted value for the magnetic susceptibility at the Neel temperature and the crystal distortion arising from the antiferromagnetic transition were reasonably well given. Application to CuO2 planes in the cuprates gives J=1220oK, compared to an experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental 230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory (1/28 revision

    Ab initio Wannier-function-based many-body approach to Born charge of crystalline insulators

    Full text link
    In this paper we present an approach aimed at performing many-body calculations of Born-effective charges of crystalline insulators, by including the electron-correlation effects. The scheme is implemented entirely in the real space, using Wannier-functions as single-particle orbitals. Correlation effects are computed by including virtual excitations from the Hartree-Fock mean field, and the excitations are organized as per a Bethe-Goldstone-like many-body hierarchy. The results of our calculations suggest that the approach presented here is promising.Comment: 5 pages, to appear in Phys. Rev. B. (Rapid Comm., Dec 15, 2004

    Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator

    Full text link
    We study the effect of uniform uniaxial strain on the ground state electronic configuration of a thin film manganite. Our model Hamiltonian includes the double-exchange, the Jahn-Teller electron-lattice coupling, and the antiferromagnetic superexchange. The strain arises due to the lattice mismatch between an insulating substrate and a manganite which produces a tetragonal distortion. This is included in the model via a modification of the hopping amplitude and the introduction of an energy splitting between the Mn e_g levels. We analyze the bulk properties of half-doped manganites and the electronic reconstruction at the interface between a ferromagnetic and metallic manganite and the insulating substrate. The strain drives an orbital selection modifying the electronic properties and the magnetic ordering of manganites and their interfaces.Comment: 8 pages, 8 figure

    Latent Process Heterogeneity in Discounting Behavior

    Get PDF
    We show that observed choices in discounting experiments are consistent with roughly one-half of the subjects using exponential discounting and one-half using quasi-hyperbolic discounting. We characterize the latent data generating process using a mixture model which allows different subjects to behave consistently with each model. Our results have substantive implications for the assumptions made about discounting behavior, and also have significant methodological implications for the manner in which we evaluate alternative models when there may be complementary data generating processes.

    Gap opening in graphene by simple periodic inhomogeneous strain

    Full text link
    Using ab-initio methods, we show that the uniform deformation either leaves graphene (semi)metallic or opens up a small gap yet only beyond the mechanical breaking point of the graphene, contrary to claims in the literature based on tight-binding (TB) calculations. It is possible, however, to open up a global gap by a sine-like one-dimensional inhomogeneous deformation applied along any direction but the armchair one, with the largest gap for the corrugation along the zigzag direction (~0.5 eV) without any electrostatic gating. The gap opening has a threshold character with very sharp rise when the ratio of the amplitude A and the period of the sine wave deformation lambda exceeds (A/lambda)_c ~0.1 and the inversion symmetry is preserved, while it is threshold-less when the symmetry is broken, in contrast with TB-derived pseudo-magnetic field models.Comment: 6 pages, 6 figures; (v2) added figures illustrating opening gap in Graphene mesh on BN, expanded analysis illustrating absence of pseudo-magnetic fields in deformed Graphen
    corecore