1,314 research outputs found

    Pesticides and metabolites in groundwater: examples from two major UK aquifers

    Get PDF
    Reducing the impact of anthropogenic pollution on groundwater bodies and ameliorating any deterioration of water quality is central to key legislative drivers such as the EU Water Framework Directive and the proposed daughter Directive relating to the protection of groundwater. Pesticide pollution has a direct impact on groundwater quality and an indirect impact on the associated aquatic ecosystems supported by groundwater. There is currently no legislative requirement to monitor pesticide metabolite concentrations in groundwater. Pesticide and metabolite results from two nationally important aquifers are presented, the Trassic Sandstone and the Chalk of Southern England. Aerobic microbial degradation of diuron in the soil can lead to the formation of three compounds; dichlorophenylmethyl urea (DCPMU), dichlorophenyl urea (DCPU) and dichloroanaline (DCA).Median diuron concentrations were significantly higher than each of the metabolites with outliers exceeding the PVC on at least one occasion. At nine sites in Kent, Southern England, (60%) metabolites were more prevalent than diuron. Both aquifers are an important source of water, locally supplying up to 80% of public drinking water. The sandstone site has a predominantly arable landuse with a potential diffuse source of pesticides although soakaways are possible point sources.The chalk site has a mixture of arable and industrial/urban landuse. A significant source has been from excessive applications of diuron (“over-spray”) on a number of public amenities. Data from both aquifers show that pesticide concentrations have a high degree of temporal variability. Elevated pesticide concentrations are associated with recharge events in both aquifer systems regardless of pesticide source terms. Pesticides from amenity use and diffuse agricultural sources both pose a threat to groundwater quality. Pesticide metabolites are present in significant concentrations in groundwaters. Systematic, long-term monitoring (5-10 years) is required to understand trends in groundwater quality

    Increasing road network resilience to the impacts of ground movement due to climate change – a case study from Lincolnshire, United Kingdom

    Get PDF
    The UK road network is deteriorating due to ageing infrastructure, climate change and increasing traffic. Due to community and economic reliance on a functioning road system, there is an urgent requirement to build resilience. The roads of south Lincolnshire have high susceptibility to ground movement due to the underlying geology. Deposits such as peat, tidal flat deposits, and alluvium have a high susceptibility to compress, particularly when loaded, or through loss of water content driven by climate change or lowering of water in drainage channels. The shallow foundations of Lincolnshire's rural evolved roads, originating from old mud tracks, are poorly constructed, increasing their vulnerability to movement. Types of damage include longitudinal cracking, edge failure, and uneven long section profiles. Through knowledge exchange, data sharing and collaboration between the British Geological Survey and Lincolnshire County Council, a direct relationship between road condition and geohazard susceptibility has been demonstrated; showing compressible ground has a greater correlation with road damage than originally considered. This suggests improved understanding of the relationships between the geological, climatic, and anthropogenic driving forces on ground movement and road damage enables more informed repair prioritisation, decision support, and improved bespoke road repair practices, increasing future resilience of road networks

    Low-temperature concentration of tellurium and gold in continental red bed successions

    Get PDF
    Acknowledgements This research was supported by NERC grants (NE/L001764/1, NE/M010953/1). We are grateful to J. Still and A. Sandison for technical support and to the gypsum mines and C. Brolley for access and sampling. Critical comments from Cristiana Ciobanu, Eric Gloaguen and Georges Calas are gratefully acknowledged. The authors have no conflicts of interest to declare.Peer reviewedPublisher PD

    Comparative study of density functional theories of the exchange-correlation hole and energy in silicon

    Full text link
    We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the Variational Monte Carlo method and predicted by various density functional models. Nonlocal density averaging methods prove to be successful in correcting severe errors in the local density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole, but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor crystal environment, particularly within the Si bond, which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten

    Weak antiferromagnetism due to Dzyaloshinskii-Moriya interaction in Ba3_3Cu2_2O4_4Cl2_2

    Full text link
    The antiferromagnetic insulating cuprate Ba3_3Cu2_2O4_4Cl2_2 contains folded CuO2_2 chains with four magnetic copper ions (S=1/2S=1/2) per unit cell. An underlying multiorbital Hubbard model is formulated and the superexchange theory is developed to derive an effective spin Hamiltonian for this cuprate. The resulting spin Hamiltonian involves a Dzyaloshinskii-Moriya term and a more weak symmetric anisotropic exchange term besides the isotropic exchange interaction. The corresponding Dzyaloshinskii-Moriya vectors of each magnetic Cu-Cu bond in the chain reveal a well defined spatial order. Both, the superexchange theory and the complementary group theoretical consideration, lead to the same conclusion on the character of this order. The analysis of the ground-state magnetic properties of the derived model leads to the prediction of an additional noncollinear modulation of the antiferromagnetic structure. This weak antiferromagnetism is restricted to one of the Cu sublattices.Comment: 13 pages, 1 table, 4 figure

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State

    Full text link
    We present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets which are close to the zero-temperature quantum transition between ground states with and without long-range N\'{e}el order. For N\'{e}el-ordered states, `nearly-critical' means that the ground state spin-stiffness, ρs\rho_s, satisfies ρsJ\rho_s \ll J, where JJ is the nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered ground states have a energy-gap, Δ\Delta, towards excitations with spin-1, which satisfies ΔJ\Delta \ll J. Under these circumstances, we show that the wavevector/frequency-dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal functions of just three thermodynamic parameters. Explicit results for the universal scaling functions are obtained by a 1/N1/N expansion on the O(N)O(N) quantum non-linear sigma model, and by Monte Carlo simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR, and magnetization measurements. Our results are in good agreement with a number of numerical simulations and experiments on undoped and lightly-doped La2δSrδCuO4La_{2-\delta} Sr_{\delta}Cu O_4.Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx
    corecore