46,876 research outputs found
Polymeric foams from cross-linkable poly-N-ary lenebenzimidazoles
Foamed cross-linked poly-N-arylenebinzimidazoles are prepared by mixing an organic tetraamine and an ortho substituted aromatic dicarboxylic acid anhydride in the presence of a blowing agent, and then heating the prepolymer to a temperature sufficient to complete polymerization and foaming of the reactants. In another embodiment of the process, the reactants are heated to form a prepolymer. The prepolymer is then cured at higher temperatures to complete foaming and polymerization
Circulatory responses to hypoxia in experimental myocardial infarction
Hypoxia affecting circulatory responses in dogs, such as cardiac output, left ventricular dp/dt, and stroke volum
Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs
A derivation of the spectral determinant of the Schr\"odinger operator on a
metric graph is presented where the local matching conditions at the vertices
are of the general form classified according to the scheme of Kostrykin and
Schrader. To formulate the spectral determinant we first derive the spectral
zeta function of the Schr\"odinger operator using an appropriate secular
equation. The result obtained for the spectral determinant is along the lines
of the recent conjecture.Comment: 16 pages, 2 figure
Sharing HOL4 and HOL Light proof knowledge
New proof assistant developments often involve concepts similar to already
formalized ones. When proving their properties, a human can often take
inspiration from the existing formalized proofs available in other provers or
libraries. In this paper we propose and evaluate a number of methods, which
strengthen proof automation by learning from proof libraries of different
provers. Certain conjectures can be proved directly from the dependencies
induced by similar proofs in the other library. Even if exact correspondences
are not found, learning-reasoning systems can make use of the association
between proved theorems and their characteristics to predict the relevant
premises. Such external help can be further combined with internal advice. We
evaluate the proposed knowledge-sharing methods by reproving the HOL Light and
HOL4 standard libraries. The learning-reasoning system HOL(y)Hammer, whose
single best strategy could automatically find proofs for 30% of the HOL Light
problems, can prove 40% with the knowledge from HOL4
Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma
Numerous reports have been made of features, either in emission or
absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally
interpreted in the context of Galactic neutron star models as cyclotron line
emission and annihilation features, the recent demonstration that
the majority of GRBs lie at cosmological distances make these explanations
unlikely. In this letter, we adopt a relativistic fireball model for
cosmological GRBs in which dense, metal rich blobs or filaments of plasma are
entrained in the relativistic outflow. In the context of this model, we
investigate the conditions under which broadband features, similar to those
detected, can be observed. We find a limited region of parameter space capable
of reproducing the observed GRB spectra. Finally, we discuss possible
constraints further high-energy spectral observations could place on fireball
model parameters.Comment: Accepted for publication in Astrophysical Journal Letters Four pages,
2 figure
Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks
Canalization of genetic regulatory networks has been argued to be favored by
evolutionary processes due to the stability that it can confer to phenotype
expression. We explore whether a significant amount of canalization and partial
canalization can arise in purely random networks in the absence of evolutionary
pressures. We use a mapping of the Boolean functions in the Kauffman N-K model
for genetic regulatory networks onto a k-dimensional Ising hypercube to show
that the functions can be divided into different classes strictly due to
geometrical constraints. The classes can be counted and their properties
determined using results from group theory and isomer chemistry. We demonstrate
that partially canalized functions completely dominate all possible Boolean
functions, particularly for higher k. This indicates that partial canalization
is extremely common, even in randomly chosen networks, and has implications for
how much information can be obtained in experiments on native state genetic
regulatory networks.Comment: 14 pages, 4 figures; version to appear in J. Phys.
Halcyornis toliapicus (aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes
Our recent X-ray micro computer-tomographic (μCT) investigations of Prophaethon shrubsolei and Odontopteryx toliapica from the Lower Eocene London Clay Formation of England revealed the avian brain to have been essentially modern in form by 55 Ma, but that an important vision-related synapomorphy of living birds, the eminentia sagittalis of the telencephalon, was poorly developed. This evidence suggested that the feature probably appeared close to the end of the Mesozoic. Here we use μCT analysis to describe the endocranium of Halcyornis toliapicus, also from the London Clay Formation. The affinities of Halcyornis have been hotly debated, with the taxon referred to the Charadriiformes (Laridae), Coraciiformes (Alcedinidae, and its own family Halcyornithidae) and most recently that Halcyornithidae may be a possible senior synonym of Pseudasturidae (Pan-Psittaciformes). Unlike Prophaethon and Odontopteryx, the eminentia sagittalis of Halcyornis is strongly developed and comparable to that of living species. Like those London Clay taxa, the eminentia sagittalis occupies a rostral position on the telencephalon. The senses of Halcyornis appear to have been well developed. The length of the cochlear duct of the inner ear indicates a hearing sensitivity within the upper range of living species, and enlarged olfactory lobes suggest a reasonable reliance on sense of smell. The optic nerves were especially well developed which, together with the strong development of the eminentia sagittalis, indicates a high degree of visual specialization in Halcyornis. The advanced development of the eminentia sagittalis further supports a Mesozoic age for the appearance of this structure and associated neural architectural complexity found in extant Aves. The eminentia sagittalis of living Psittaciformes is situated caudally on the telencephalon, making a Pan-Psittaciformes relationship unlikely for Halcyorni
Power laws, scale invariance, and generalized Frobenius series: Applications to Newtonian and TOV stars near criticality
We present a self-contained formalism for analyzing scale invariant
differential equations. We first cast the scale invariant model into its
equidimensional and autonomous forms, find its fixed points, and then obtain
power-law background solutions. After linearizing about these fixed points, we
find a second linearized solution, which provides a distinct collection of
power laws characterizing the deviations from the fixed point. We prove that
generically there will be a region surrounding the fixed point in which the
complete general solution can be represented as a generalized Frobenius-like
power series with exponents that are integer multiples of the exponents arising
in the linearized problem. This Frobenius-like series can be viewed as a
variant of Liapunov's expansion theorem. As specific examples we apply these
ideas to Newtonian and relativistic isothermal stars and demonstrate (both
numerically and analytically) that the solution exhibits oscillatory power-law
behaviour as the star approaches the point of collapse. These series solutions
extend classical results. (Lane, Emden, and Chandrasekhar in the Newtonian
case; Harrison, Thorne, Wakano, and Wheeler in the relativistic case.) We also
indicate how to extend these ideas to situations where fixed points may not
exist -- either due to ``monotone'' flow or due to the presence of limit
cycles. Monotone flow generically leads to logarithmic deviations from scaling,
while limit cycles generally lead to discrete self-similar solutions.Comment: 35 pages; IJMPA style fil
Absorption in atomic wires
The transfer matrix formalism is implemented in the form of the multiple
collision technique to account for dissipative transmission processes by using
complex potentials in several models of atomic chains. The absorption term is
rigorously treated to recover unitarity for the non-hermitian hamiltonians. In
contrast to other models of parametrized scatterers we assemble explicit
potentials profiles in the form of delta arrays, Poschl-Teller holes and
complex Scarf potentials. The techniques developed provide analytical
expressions for the scattering and absorption probabilities of arbitrarily long
wires. The approach presented is suitable for modelling molecular aggregate
potentials and also supports new models of continuous disordered systems. The
results obtained also suggest the possibility of using these complex potentials
within disordered wires to study the loss of coherence in the electronic
localization regime due to phase-breaking inelastic processes.Comment: 14 pages, 15 figures. To appear in Phys. Rev.
Premise Selection and External Provers for HOL4
Learning-assisted automated reasoning has recently gained popularity among
the users of Isabelle/HOL, HOL Light, and Mizar. In this paper, we present an
add-on to the HOL4 proof assistant and an adaptation of the HOLyHammer system
that provides machine learning-based premise selection and automated reasoning
also for HOL4. We efficiently record the HOL4 dependencies and extract features
from the theorem statements, which form a basis for premise selection.
HOLyHammer transforms the HOL4 statements in the various TPTP-ATP proof
formats, which are then processed by the ATPs. We discuss the different
evaluation settings: ATPs, accessible lemmas, and premise numbers. We measure
the performance of HOLyHammer on the HOL4 standard library. The results are
combined accordingly and compared with the HOL Light experiments, showing a
comparably high quality of predictions. The system directly benefits HOL4 users
by automatically finding proofs dependencies that can be reconstructed by
Metis
- …