4,563 research outputs found

    Applying hierarchical task analysis to medication administration errors

    Get PDF
    Medication use in hospitals is a complex process and is dependent on the successful interaction of health professionals functioning within different disciplines. Errors can occur at any one of the five main stages of prescribing, documenting, dispensing or preparation, administering and monitoring. The responsibility for the error is often placed on the nurse, as she or he is the last person in the drug administration chain whilst more pressing underlying causal factors remain unresolved. This paper demonstrates how hierarchical task analysis can be used to model drug administration and then uses the systematic human error reduction and prediction approach to predict which errors are likely to occur. The paper also puts forward design solutions to mitigate these errors

    An Assessment of Economic Considerations for Industrial Hemp Production

    Get PDF
    United States farm policy and programs are governed by the Farm Bill. The 2014 Farm Bill allows for the legal production and research of industrial hemp as long as it meets the standards outlined in the Farm Bill. Although it has a wide range of uses (upwards of 25,000 products use hemp), there is a lack of recent information regarding the economic feasibility of hemp production for the private agricultural sector. Through an extensive search of existing literature, information was gathered to construct an enterprise budget for industrial hemp. Data from the enterprise budget were used in a constrained linear programming model to compare how introducing industrial hemp production could change crop allocations in all 75 counties of Arkansas When industrial hemp was introduced, the total number of acres farmed increased by 2.8% to 4.4%, the statewide profit increased by 0.3% to 18.2%, and rice was the only crop that increased in acreage by 5%. While these results suggest that industrial hemp may be an economically promising crop, there are still hurdles to overcome. The lack of clearance (permitting) by the Drug Enforcement Agency and the absence of hemp processing facilities in the United States are clear roadblocks to hemp production. Once permitting hurdles are overcome, additional research will be needed to identify optimal locations for processing facilities and target markets for hemp goods

    Oocyte cryopreservation as an adjunct to the assisted reproductive technologies

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisherā€™s copy is included. See page 2 of PDF for this item.Keith L Harrison, Michelle T Lane, Jeremy C Osborn, Christine A Kirby, Regan Jeffrey, John H Esler and David Mollo

    HindSight: Encouraging Exploration through Direct Encoding of Personal Interaction History

    Get PDF
    Physical and digital objects often leave markers of our use. Website links turn purple after we visit them, for example, showing us information we have yet to explore. These ā€œfootprintsā€ of interaction offer substantial benefits in information saturated environments - they enable us to easily revisit old information, systematically explore new information, and quickly resume tasks after interruption. While applying these design principles have been successful in HCI contexts, direct encodings of personal interaction history have received scarce attention in data visualization. One reason is that there is little guidance for integrating history into visualizations where many visual channels are already occupied by data. More importantly, there is not firm evidence that making users aware of their interaction history results in benefits with regards to exploration or insights. Following these observations, we propose HindSight - an umbrella term for the design space of representing interaction history directly in existing data visualizations. In this paper, we examine the value of HindSight principles by augmenting existing visualizations with visual indicators of user interaction history (e.g. How the Recession Shaped the Economy in 255 Charts, NYTimes). In controlled experiments of over 400 participants, we found that HindSight designs generally encouraged people to visit more data and recall different insights after interaction. The results of our experiments suggest that simple additions to visualizations can make users aware of their interaction history, and that these additions significantly impact users\u27 exploration and insights

    HindSight: Encouraging Exploration through Direct Encoding of Personal Interaction History

    Get PDF
    Physical and digital objects often leave markers of our use. Website links turn purple after we visit them, for example, showing us information we have yet to explore. These ā€œfootprintsā€ of interaction offer substantial benefits in information saturated environments - they enable us to easily revisit old information, systematically explore new information, and quickly resume tasks after interruption. While applying these design principles have been successful in HCI contexts, direct encodings of personal interaction history have received scarce attention in data visualization. One reason is that there is little guidance for integrating history into visualizations where many visual channels are already occupied by data. More importantly, there is not firm evidence that making users aware of their interaction history results in benefits with regards to exploration or insights. Following these observations, we propose HindSight - an umbrella term for the design space of representing interaction history directly in existing data visualizations. In this paper, we examine the value of HindSight principles by augmenting existing visualizations with visual indicators of user interaction history (e.g. How the Recession Shaped the Economy in 255 Charts, NYTimes). In controlled experiments of over 400 participants, we found that HindSight designs generally encouraged people to visit more data and recall different insights after interaction. The results of our experiments suggest that simple additions to visualizations can make users aware of their interaction history, and that these additions significantly impact users\u27 exploration and insights

    A biophysical basis for the emergence of the genetic code in protocells

    Get PDF
    The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells

    Beyond Detection: Investing in Practical and Theoretical Applications of Emotion + Visualization

    Get PDF
    Emotion is a dynamic variable that modulates how we perceive, reason about, and interact with our environment. Recent studies have established that emotionā€™s influence carries to data analysis and visualization, impacting performance in ways both positive and negative. While we are still in the infancy of understanding the role emotion plays in analytical contexts, advances in physiological sensing and emotion research have raised the possibility of creating emotion-aware systems. In this position paper, we argue that it is critical to consider the potential advances that can be made even in the face of imperfect sensing, while we continue to address the practical challenges of monitoring emotion in the wild. To underscore the importance of this line of inquiry, we highlight several key challenges related to detection, adaptation, and impact of emotional states for users of data visualization systems, and motivate promising avenues for future research in these areas

    Prebiotic Synthesis of Aspartate Using Lifeā€™s Metabolism as a Guide

    Get PDF
    A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartateā€™s prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetateā€™s degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product Ī²-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions

    Life as a guide to prebiotic nucleotide synthesis

    Get PDF
    Synthesis of activated nucleotides has been accomplished under ā€˜prebiotically plausibleā€™ conditions, but bears little resemblance to the chemistry of life as we know it. Here we argue that life is an indispensable guide to its own origins

    The limits of metabolic heredity in protocells

    Get PDF
    The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H2 and CO2, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO2 fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO2 fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO2 fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO2 fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life
    • ā€¦
    corecore