36,335 research outputs found

    A normalisation procedure for biaxial bias extension tests

    Get PDF
    Biaxial Bias Extension tests have been performed on a plain-weave carbon fibre engineering fabric. The test results have been normalised using both the upper and lower bound method proposed by Potluri et al. and also using a novel alternative normalisation method based on energy arguments. The normalised results from both methods are compared and discussed

    Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1-xAs device

    Get PDF
    The carrier transition rates and subband populations for a GaAs/AlGaAs quantum cascade laser operating in the mid-infrared frequency range are calculated by solving the rate equations describing the electron densities in each subband self-consistently. These calculations are repeated for a range of temperatures from 20 to 300 K. The lifetime of the upper laser level found by this self-consistent method is then used to calculate the gain for this range of temperatures. At a temperature of 77 K, the gain of the laser is found to be 34 cm(-1)/(kA/cm(-2)), when only electron–longitudinal-optical phonon transitions are considered in the calculation. The calculated gain decreases to 19.6 cm(-1)/(kA/cm(-2)) when electron–electron transition rates are included, thus showing their importance in physical models of these devices. Further analysis shows that thermionic emission could be occurring in real devices. © 2001 American Institute of Physics

    Stark ladders as tunable far-infrared emitters

    Get PDF
    A superlattice of GaAs/Ga(1 – x)Al(x)As quantum wells forms a Stark ladder under the influence of a perpendicular electric field. A two level incoherent emitter system, formed by radiative intersubband transitions between adjacent wells, is investigated as a tunable far-infrared radiation source. Intersubband transition rates are calculated at 4, 77, and 300 K for applied fields from 0 to 40 kV cm(–1). It is shown that the quantum efficiency of the radiative emission reaches a maximum at low temperatures for a field of 32 kV cm(–1). Under these conditions the emission wavelength is 38 µm with an estimated power output of 1.1 mW. © 1998 American Institute of Physics

    Quantifying Equivocation for Finite Blocklength Wiretap Codes

    Full text link
    This paper presents a new technique for providing the analysis and comparison of wiretap codes in the small blocklength regime over the binary erasure wiretap channel. A major result is the development of Monte Carlo strategies for quantifying a code's equivocation, which mirrors techniques used to analyze normal error correcting codes. For this paper, we limit our analysis to coset-based wiretap codes, and make several comparisons of different code families at small and medium blocklengths. Our results indicate that there are security advantages to using specific codes when using small to medium blocklengths.Comment: Submitted to ICC 201

    Least-squares methods for identifying biochemical regulatory networks from noisy measurements

    Get PDF
    <b>Background</b>: We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks. <b>Results</b>: The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and <i>mdm2</i> messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL)-6 and (IL)-12b messenger RNA expression as a function of ATF3 and NF-ÎşB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL)-6 and (IL)-12b by ATF3. <b>Conclusion</b>: The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable more accurate and reliable identification and modelling of biochemical networks

    A new quantum fluid at high magnetic fields in the marginal charge-density-wave system α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (where M=M=~K and Rb)

    Full text link
    Single crystals of the organic charge-transfer salts α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 have been studied using Hall-potential measurements (M=M=K) and magnetization experiments (MM = K, Rb). The data show that two types of screening currents occur within the high-field, low-temperature CDWx_x phases of these salts in response to time-dependent magnetic fields. The first, which gives rise to the induced Hall potential, is a free current (jfree{\bf j}_{\rm free}), present at the surface of the sample. The time constant for the decay of these currents is much longer than that expected from the sample resistivity. The second component of the current appears to be magnetic (jmag{\bf j}_{\rm mag}), in that it is a microscopic, quasi-orbital effect; it is evenly distributed within the bulk of the sample upon saturation. To explain these data, we propose a simple model invoking a new type of quantum fluid comprising a CDW coexisting with a two-dimensional Fermi-surface pocket which describes the two types of current. The model and data are able to account for the body of previous experimental data which had generated apparently contradictory interpretations in terms of the quantum Hall effect or superconductivity.Comment: 13 pages, 11 figure
    • …
    corecore