1,720 research outputs found

    Theory and experiment of the ESR of Co2+^{2+} in Zn2_2 % (OH)PO4_4 and Mg2_2(OH)AsO4_4

    Full text link
    Experiments of Electron Spin Resonance (ESR) were performed on Co% ^{2+} substituting Zn2+^{2+} or Mg2+^{2+} in powder samples of Zn2_2(OH)PO4_4 and Mg2_2(OH)AsO4_4. The observed resonances are described with a theoretical model that considers the departures from the two perfect structures. It is shown that the resonance in the penta-coordinated complex is allowed, and the crystal fields that would describe the resonance of the Co2+^{2+} in the two environments are calculated. The small intensity of the resonance in the penta-coordinated complex is explained assuming that this site is much less populated than the octahedral one; this assumption was verified by a molecular calculation of the energies of the two environments, with both Co and Zn as central ions in Zn2_2(OH)PO4_4.Comment: 43 pages, LaTex file, 6 figures, EPS. submitted to Journal of Physics Condens

    Dual-energy X-ray absorptiometry scans accurately predict differing body fat content in live sheep

    Get PDF
    Background There is considerable interest in implementing mobile scanning technology for on-farm body composition analysis on live animals. These experiments evaluated the use of dual energy X-ray absorptiometry (DXA) as an accurate method of total body fat measurement in live sheep. Results In Exp. 1, visceral and whole body fat analysis was undertaken in sheep with body condition scores (BCS) in the range 2 to 3.25 (scale 1: thin to 5: fat). The relationship of BCS was moderately correlated with visceral fat depot mass (r = 0.59, P  0.05, n = 9). There was a moderate correlation between DXA body fat and BCS (r = 0.70, P < 0.01, n = 17), and DXA body fat was highly correlated with chemical body fat (r = 0.81, P < 0.001, n = 9). In Exp. 3, a series of five DXA scans, at 8-week intervals, was performed on growing sheep over a 32-week period. The average BCS ranged from 2.39 ± 0.07 (S.E.M.) to 3.05 ± 0.11 and the DXA body fat (%) ranged from 16.8 ± 0.8 to 24.2 ± 1.2. There was a moderate correlation between DXA body fat and BCS over the 32 weeks (r = 0.61, P < 0.001, n = 24). Conclusions Overall, these experiments indicated that there was good agreement between BCS, DXA and chemical analysis for measuring total body fat in sheep, and that DXA scanning is a valid method for longitudinal measurement of total body fat in live sheep

    Evidence for the Gompertz Curve in the Income Distribution of Brazil 1978-2005

    Full text link
    This work presents an empirical study of the evolution of the personal income distribution in Brazil. Yearly samples available from 1978 to 2005 were studied and evidence was found that the complementary cumulative distribution of personal income for 99% of the economically less favorable population is well represented by a Gompertz curve of the form G(x)=exp[exp(ABx)]G(x)=\exp [\exp (A-Bx)], where xx is the normalized individual income. The complementary cumulative distribution of the remaining 1% richest part of the population is well represented by a Pareto power law distribution P(x)=βxαP(x)= \beta x^{-\alpha}. This result means that similarly to other countries, Brazil's income distribution is characterized by a well defined two class system. The parameters AA, BB, α\alpha, β\beta were determined by a mixture of boundary conditions, normalization and fitting methods for every year in the time span of this study. Since the Gompertz curve is characteristic of growth models, its presence here suggests that these patterns in income distribution could be a consequence of the growth dynamics of the underlying economic system. In addition, we found out that the percentage share of both the Gompertzian and Paretian components relative to the total income shows an approximate cycling pattern with periods of about 4 years and whose maximum and minimum peaks in each component alternate at about every 2 years. This finding suggests that the growth dynamics of Brazil's economic system might possibly follow a Goodwin-type class model dynamics based on the application of the Lotka-Volterra equation to economic growth and cycle.Comment: 22 pages, 15 figures, 4 tables. LaTeX. Accepted for publication in "The European Physical Journal B

    Transverse electrokinetic and microfluidic effects in micro-patterned channels: lubrication analysis for slab geometries

    Full text link
    Off-diagonal (transverse) effects in micro-patterned geometries are predicted and analyzed within the general frame of linear response theory, relating applied presure gradient and electric field to flow and electric current. These effects could contribute to the design of pumps, mixers or flow detectors. Shape and charge density modulations are proposed as a means to obtain sizeable transverse effects, as demonstrated by focusing on simple geometries and using the lubrication approximation.Comment: 9 pages, 7 figure

    Equation of state of neutron star cores and spin down of isolated pulsars

    Get PDF
    We study possible impact of a softening of the equation of state by a phase transition, or appearance of hyperons, on the spin evolution of of isolated pulsars. Numerical simulations are performed using exact 2-D simulations in general relativity. The equation of state of dense matter at supranuclear densities is poorly known. Therefore, the accent is put on the general correlations between evolution and equation of state, and mathematical strictness. General conjectures referring to the structure of the one-parameter families of stationary configurations are formulated. The interplay of the back bending phenomenon and stability with respect to axisymmetric perturbations is described. Changes of pulsar parameters in a corequake following instability are discussed, for a broad choice of phase transitions predicted by different theories of dense matter. The energy release in a corequake, at a given initial pressure, is shown to be independent of the angular momentum of collapsing configuration. This result holds for various types of phases transition, with and without metastability. We critically review observations of pulsars that could be relevant for the detection of the signatures of the phase transition in neutron star cores.Comment: 7 pages, 11 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Multispecies virial expansions

    Get PDF
    We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs

    Implications of the HERA Events for the R-Parity Breaking SUSY Signals at Tevatron

    Get PDF
    The favoured R-parity violating SUSY scenarios for the anomalous HERA events correspond to top and charm squark production via the λ131\lambda'_{131} and λ121\lambda'_{121} couplings. In both cases the corresponding electronic branching fractions of the squarks are expected to be 1\ll 1. Consequently the canonical leptoquark signature is incapable of probing these scenarios at the Tevatron collider over most of the MSSM parameter space. We suggest alternative signatures for probing them at Tevatron, which seem to be viable over the entire range of MSSM parameters.Comment: 20 pages Latex file with 4 ps files containing 4 figure

    Does the Hubble Redshift Flip Photons and Gravitons?

    Full text link
    Due to the Hubble redshift, photon energy, chiefly in the form of CMBR photons, is currently disappearing from the universe at the rate of nearly 10^55 erg s^-1. An ongoing problem in cosmology concerns the fate of this energy. In one interpretation it is irretrievably lost, i.e., energy is not conserved on the cosmic scale. Here we consider a different possibility which retains universal energy conservation. If gravitational energy is redshifted in the same manner as photons, then it can be shown that the cosmic redshift removes gravitational energy from space at about the same rate as photon energy. Treating gravitational potential energy conventionally as negative energy, it is proposed that the Hubble shift 'flips' positive energy (photons) to negative energy (gravitons) and vice versa. The lost photon energy would thus be directed towards gravitation, making gravitational energy wells more negative. Conversely, within astrophysical bodies of sufficient size, the flipping of gravitons to photons would give rise to a 'Hubble luminosity' of magnitude -UH, where U is the internal gravitational potential energy of the object and H the Hubble constant. Evidence of such an energy release is presented in bodies ranging from planets, white dwarfs and neutron stars to supermassive black holes and the visible universe.Comment: 18 pages, including 2 tables, one figur

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic

    Spin and charge ordering in self-doped Mott insulators

    Full text link
    We have investigated possible spin and charge ordered states in 3d transition-metal oxides with small or negative charge-transfer energy, which can be regarded as self-doped Mott insulators, using Hartree-Fock calculations on d-p-type lattice models. It was found that an antiferromagnetic state with charge ordering in oxygen 2p orbitals is favored for relatively large charge-transfer energy and may be relevant for PrNiO3_3 and NdNiO3_3. On the other hand, an antiferromagnetic state with charge ordering in transition-metal 3dd orbitals tends to be stable for highly negative charge-transfer energy and can be stabilized by the breathing-type lattice distortion; this is probably realized in YNiO3_3.Comment: 4 pages, 4 figure
    corecore