65,051 research outputs found
Introduction: Aināt It Evil to Live Backwards? : A Hip Hop Perspective of Religion
Historically, Black religion has been the cornerstone of the African experience in America. Due to the peculiar institutionā of slavery and the ways this institutional residue still affect the lives of slave descendants, Hip Hop provides a forum to simultaneously acknowledge similarities and highlight differences. What scholars of religion and Hip Hop studies have revealed are the ways in which the effectiveness and our very understanding of āreligionā changes when we bring Hip Hop in to the mix
Fourier's law on a one-dimensional optical random lattice
We study the transport properties of a one-dimensional hard-core bosonic
lattice gas coupled to two particle reservoirs at different chemical potentials
which generate a current flow through the system. In particular, the influence
of random fluctuations of the underlying lattice on the stationary-state
properties is investigated. We show analytically that the steady-state density
presents a linear profile. The local steady-state current obeys the Fourier law
where is a typical timescale of the lattice
fluctuations and the density gradient imposed by the reservoirs.Comment: 9 pages, 2 figure
Impact of flying qualities on mission effectiveness for helicopter air combat, volume 1
A computer simulation to investigate the impact of flying qualities on mission effectiveness is described. The objective of the study was to relate the effects of flying qualities, such as precision of flight path control and pilot workload, to the ability of a single Scout helicopter, or helicopter team, to accomplish a specified anti-armor mission successfully. The model of the actual engagement is a Monte Carlo simulation that has the capability to assess the effects of helicopter characteristics, numbers, tactics and weaponization on the force's ability to accomplish a specific mission against a specified threat as a function of realistic tactical factors. A key feature of this program is a simulation of micro-terrain features and their effects on detection, exposure, and masking for nap-of-the-earth (NOE) flight
Study of sample drilling techniques for Mars sample return missions
To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed
Understanding Floristic Diversity Though a Database of Greene County Specimens
We present a floristic list of Greene County, Arkansas, based on accessioned collections from the Arkansas State University Herbarium (STAR). Currently, there are 1569 specimens representing 540 taxa from Greene County in STAR. Using the USDA Plants Database, plant species were analyzed according to whether or not they are native to the state as well as whether or not they have been previously documented as species occurring in the county. Having analyzed all the Greene County collections from STAR, we found 225 previously undocumented species. The data suggest that most of the specimens in the STAR collection were found in wooded areas and/or near water. This may be a reflection of sampling bias as two of the primary collectors of these specimens were primarily interested in bog habitats. For this reason, the Greene County collections may not fully represent all habitats in the county, but it is likely that they are a good representation of the countyās seeps and bogs. The STAR Herbarium is emerging as a critical resource for understanding botanical diversity in the eastern counties of Arkansas, but it is clear that additional collections are necessary to fully represent all habitats in these areas
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons
Cathodoluminescence of nanocrystalline Y2O3:Eu3+ with various Eu3+ concentrations
Ā© The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Herein a study on the preparation and cathodoluminescence of monosized spherical nanoparticles of Y2O3:Eu3+ having a Eu3+ concentration that varies between 0.01 and 10% is described. The luminous efficiency and decay time have been determined at low a current density, whereas cathodoluminescence-microscopy has been carried out at high current density, the latter led to substantial saturation of certain spectral transitions. A novel theory is presented to evaluate the critical distance for energy transfer from Eu3+ ions in S6 to Eu3+ ions in C2 sites. It was found that Y2O3:Eu3+ with 1ā2% Eu3+ has the highest luminous efficiency of 16lm/w at 15keV electron energy. Decay times of the emission from 5D0 (C2) and 5D1 (C2) and 5D0 (S6) levels were determined. The difference in decay time from the 5D0 (C2) and 5D1 (C2) levels largely explained the observed phenomena in the cathodoluminescence-micrographs recorded with our field emission scanning electron microscope
Cathodoluminescence of Double Layers of Phosphor Particles
This article has been made available through the Brunel Open Access Publishing Fund.We present radiance measurements of particle layers of ZnO:Zn, Y2O3:Eu and Y2O2S:Eu bombarded with electrons at anode voltages between 1 and 15 kV. The layers described in this work refer to single component layers, double layers and two component mixtures. The phosphor layers are deposited on ITO-coated glass slides by settling; the efficiency of the cathodoluminescence is determined by summing the radiances and luminances in the reflected and transmitted modes respectively. The efficiency of a double layer of Y2O3:Eu on top of ZnO:Zn at high electron energy is significantly larger than the efficiency of a corresponding layer in which the two components are mixed. This result is interpreted in terms of the penetration-model, which predicts a larger efficiency for a high-voltage phosphor on top of a low-voltage phosphor. When a layer of the low-voltage phosphor ZnO:Zn is on top of the high-voltage phosphor Y2O3:Eu, we also observe a higher efficiency than that of the corresponding layer with both components mixed. In this case the efficiency increases due to suppression of charging in the Y2O3:Eu layer. Double layers of ZnO:Zn and Y2O2S:Eu did not show enhanced efficiency, because the size of the Y2O2S:Eu particles was too large to evoke the penetration effect.
Ā© The Author(s) 2014. Published by ECS
Wire tomography in the H-1NF heliac for investigation of fine structure of magnetic islands
Electron beam wire tomography in the H-1NF heliac enables high resolution mapping of vacuum flux surfaces with minimal disruption of the plasma operations schedule. Recent experimental results have proven this technique to be a highly accurate and high resolution method for mapping vacuum magnetic islands. Islands of width as small as delta approximately 8 mm have been measured, providing estimates of the internal rotational transform of the island. Point-to-point comparison of the mapping results with computer tracing, in conjunction with an image warping technique, enables systematic exploration of magnetic islands and surfaces of interest. Recent development of a fast mapping technique significantly reduced the mapping time and made this technique suitable for mapping at higher magnetic fields. This article presents recent experimental results and associated techniques.with support from
the Australian Research Council Grant No. DP0344361
Linearizability with Ownership Transfer
Linearizability is a commonly accepted notion of correctness for libraries of
concurrent algorithms. Unfortunately, it assumes a complete isolation between a
library and its client, with interactions limited to passing values of a given
data type. This is inappropriate for common programming languages, where
libraries and their clients can communicate via the heap, transferring the
ownership of data structures, and can even run in a shared address space
without any memory protection. In this paper, we present the first definition
of linearizability that lifts this limitation and establish an Abstraction
Theorem: while proving a property of a client of a concurrent library, we can
soundly replace the library by its abstract implementation related to the
original one by our generalisation of linearizability. This allows abstracting
from the details of the library implementation while reasoning about the
client. We also prove that linearizability with ownership transfer can be
derived from the classical one if the library does not access some of data
structures transferred to it by the client
- ā¦