55,022 research outputs found
A Color-Magnitude Diagram for a Globular Cluster In the Giant Elliptical Galaxy NGC 5128
The Hubble Space Telescope has been used to obtain WFPC2 (V,I) photometry for
a large sample of stars in the outer halo of the giant elliptical NGC 5128 (d =
4 Mpc). The globular cluster N5128-C44, at the center of the Planetary Camera
field, is well enough resolved to permit the construction of a color-magnitude
diagram (CMD) for it which covers the brightest two magnitudes of the giant
branch. The CMD is consistent with that of a normal old, moderately
low-metallicity ([Fe/H] = -1.30 globular cluster, distinctly more metal-poor
than most of the field halo stars at the same projected location (which average
[Fe/H] ~ -0.5). This is the most distant globular cluster in which direct
color-magnitude photometry has been achieved to date, and the first one
belonging to a giant E galaxy.Comment: 12 pages, LaTeX, including 5 postscript figures; submitted to
Astronomical Journa
Discrete Group Actions on Spacetimes: Causality Conditions and the Causal Boundary
Suppose a spacetime is a quotient of a spacetime by a discrete group
of isometries. It is shown how causality conditions in the two spacetimes are
related, and how can one learn about the future causal boundary on by
studying structures in . The relations between the two are particularly
simple (the boundary of the quotient is the quotient of the boundary) if both
and have spacelike future boundaries and if it is known that the
quotient of the future completion of is past-distinguishing. (That last
assumption is automatic in the case of being multi-warped.)Comment: 32 page
Recurrence Formulas for Fully Exponentially Correlated Four-Body Wavefunctions
Formulas are presented for the recursive generation of four-body integrals in
which the integrand consists of arbitrary integer powers (>= -1) of all the
interparticle distances r_ij, multiplied by an exponential containing an
arbitrary linear combination of all the r_ij. These integrals are
generalizations of those encountered using Hylleraas basis functions, and
include all that are needed to make energy computations on the Li atom and
other four-body systems with a fully exponentially correlated Slater-type basis
of arbitrary quantum numbers. The only quantities needed to start the recursion
are the basic four-body integral first evaluated by Fromm and Hill, plus some
easily evaluated three-body "boundary" integrals. The computational labor in
constructing integral sets for practical computations is less than when the
integrals are generated using explicit formulas obtained by differentiating the
basic integral with respect to its parameters. Computations are facilitated by
using a symbolic algebra program (MAPLE) to compute array index pointers and
present syntactically correct FORTRAN source code as output; in this way it is
possible to obtain error-free high-speed evaluations with minimal effort. The
work can be checked by verifying sum rules the integrals must satisfy.Comment: 10 pages, no figures, accepted by Phys. Rev. A (January 2009
Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system
Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training
Structural parameters for globular clusters in M31 and generalizations for the fundamental plane
The structures of globular clusters (GCs) reflect their dynamical states and
past histories. High-resolution imaging allows the exploration of morphologies
of clusters in other galaxies. Surface brightness profiles from new Hubble
Space Telescope observations of 34 globular clusters in M31 are presented,
together with fits of several different structural models to each cluster. M31
clusters appear to be adequately fit by standard King models, and do not
obviously require alternate descriptions with relatively stronger halos, such
as are needed to fit many GCs in other nearby galaxies. The derived structural
parameters are combined with corrected versions of those measured in an earlier
survey to construct a comprehensive catalog of structural and dynamical
parameters for M31 GCs with a sample size similar to that for the Milky Way.
Clusters in M31, the Milky Way, Magellanic Clouds, Fornax dwarf spheroidal and
NGC 5128 define a very tight fundamental plane with identical slopes. The
combined evidence for these widely different galaxies strongly reinforces the
view that old globular clusters have near-universal structural properties
regardless of host environment.Comment: AJ in press; 59 pages including 16 figure
On a property of random-oriented percolation in a quadrant
Grimmett's random-orientation percolation is formulated as follows. The
square lattice is used to generate an oriented graph such that each edge is
oriented rightwards (resp. upwards) with probability and leftwards (resp.
downwards) otherwise. We consider a variation of Grimmett's model proposed by
Hegarty, in which edges are oriented away from the origin with probability ,
and towards it with probability , which implies rotational instead of
translational symmetry. We show that both models could be considered as special
cases of random-oriented percolation in the NE-quadrant, provided that the
critical value for the latter is 1/2. As a corollary, we unconditionally obtain
a non-trivial lower bound for the critical value of Hegarty's
random-orientation model. The second part of the paper is devoted to higher
dimensions and we show that the Grimmett model percolates in any slab of height
at least 3 in .Comment: The abstract has been updated, discussion has been added to the end
of the articl
INITIAL APPLICATIONS OF FUZZY SET PROCEDURES FOR ESTIMATION OF EXPORT BASE EMPLOYMENT
Current export base methods that calculate basic and non-basic employment are too restrictive because they fail to account for uncertainty involved in the process. This paper shows the assignment of industries as either basic or non-basic by the location quotient procedure does not consistently represent the data for Nevada counties. Using fuzzy set procedures and membership functions in conjunction with the location quotient allow more flexibility in terms of matching the data for each industry in the region of interest. Using fuzzy set procedures we determine the proportion of employment that is basic and non-basic in nine non-governmental industries.Labor and Human Capital,
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 3A: Supporting data
For abstract, see N75-15681
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 1: Summary report
A 1/8-scale structural dynamics model of the space shuttle orbiter was analyzed using the NASA Structural Analysis System (NASTRAN). Comparison of the calculated eigenvalues with preliminary test data for the unrestrained condition indicate that the analytical model was consistently stiffer, being about 20% higher in the first mode. The eigenvectors show reasonably good agreement with test data. A series of analytical and experimental investigations undertaken to resolve the discrepancy are described. Modifications in the NASTRAN model based upon these investigations resulted in close agreement for both eigenvalues and eigenvectors
- …