1,669 research outputs found
Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency
We propose an optical double-cavity resonator whose response to a signal is
similar to that of an Electromagnetically Induced Transparency (EIT) medium. A
combination of such a device with a four-level EIT medium can serve for
achieving large cross-Kerr modulation of a probe field by a signal field. This
would offer the possibility of building a quantum logic gate based on photonic
qubits. We discuss the technical requirements that are necessary for realizing
a probe-photon phase shift of Pi caused by a single-photon signal. The main
difficulty is the requirement of an ultra-low reflectivity beamsplitter and to
operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor
changes in discussion of experimental conditions
Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions
We present a full quantum analysis of resonant forward four-wave mixing based
on electromagnetically induced transparency (EIT). In particular, we study the
regime of efficient nonlinear conversion with low-intensity fields that has
been predicted from a semiclassical analysis. We derive an effective nonlinear
interaction Hamiltonian in the adiabatic limit. In contrast to conventional
nonlinear optics this Hamiltonian does not have a power expansion in the fields
and the conversion length increases with the input power. We analyze the
stationary wave-mixing process in the forward scattering configuration using an
exact numerical analysis for up to input photons and compare the results
with a mean-field approach. Due to quantum effects, complete conversion from
the two pump fields into the signal and idler modes is achieved only
asymptotically for large coherent pump intensities or for pump fields in
few-photon Fock states. The signal and idler fields are perfectly quantum
correlated which has potential applications in quantum communication schemes.
We also discuss the implementation of a single-photon phase gate for continuous
quantum computation.Comment: 10 pages, 11 figure
CP Test in J/Psi -> gamma phi phi Decay
We propose to test CP symmetry in the decay \jp\to \gamma \phi\phi, for
which large data sample exists at BESII, and a data sample of
's will be collected with BESIII and CLEO-C program. We suggest some CP
asymmetries in this decay mode for CP test. Assuming that CP violation is
introduced by the electric- and chromo-dipole moment of charm quark, these CP
asymmetries can be predicted by using valence quark models. Our work shows a
possible way to get information about the electric- and chromo-dipole moment of
charm quark, which is little known. Our results show that with the current data
sample of , electric- and chromo-dipole moment can be probed at order
of . In the near future with a data sample, these
moments can be probed at order of .Comment: Misprints corrected. To appear in Phys. Lett.
Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets
We analyze both analytically and numerically the resonant four-wave mixing of
two co-propagating single-photon wave packets. We present analytic expressions
for the two-photon wave function and show that soliton-type quantum solutions
exist which display a shape-preserving oscillatory exchange of excitations
between the modes. Potential applications including quantum information
processing are discussed.Comment: 7 pages, 3 figure
Electromagnetically induced transparency and controlled group velocity in a multilevel system
Published versio
Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime
The generation of an entangled coherent state is one of the most important
ingredients of quantum information processing using coherent states. Recently,
numerous schemes to achieve this task have been proposed. In order to generate
travelling-wave entangled coherent states, cross phase modulation, optimized by
optical Kerr effect enhancement in a dense medium in an electromagnetically
induced transparency (EIT) regime, seems to be very promising. In this
scenario, we propose a fully quantized model of a double-EIT scheme recently
proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833
(2002)]: the quantization step is performed adopting a fully Hamiltonian
approach. This allows us to write effective equations of motion for two
interacting quantum fields of light that show how the dynamics of one field
depends on the photon-number operator of the other. The preparation of a
Schr\"odinger cat state, which is a superposition of two distinct coherent
states, is briefly exposed. This is based on non-linear interaction via
double-EIT of two light fields (initially prepared in coherent states) and on a
detection step performed using a beam splitter and two photodetectors.
In order to show the entanglement of a generated entangled coherent state, we
suggest to measure the joint quadrature variance of the field. We show that the
entangled coherent states satisfy the sufficient condition for entanglement
based on quadrature variance measurement. We also show how robust our scheme is
against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section
A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation
A thought experiment is proposed to demonstrate the existence of a
gravitational, vector Aharonov-Bohm effect. A connection is made between the
gravitational, vector Aharonov-Bohm effect and the principle of local gauge
invariance for nonrelativistic quantum matter interacting with weak
gravitational fields. The compensating vector fields that are necessitated by
this local gauge principle are shown to be incorporated by the DeWitt minimal
coupling rule. The nonrelativistic Hamiltonian for weak, time-independent
fields interacting with quantum matter is then extended to time-dependent
fields, and applied to problem of the interaction of radiation with
macroscopically coherent quantum systems, including the problem of
gravitational radiation interacting with superconductors. But first we examine
the interaction of EM radiation with superconductors in a parametric oscillator
consisting of a superconducting wire placed at the center of a high Q
superconducting cavity driven by pump microwaves. We find that the threshold
for parametric oscillation for EM microwave generation is much lower for the
separated configuration than the unseparated one, which then leads to an
observable dynamical Casimir effect. We speculate that a separated parametric
oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012
Nucleation versus Spinodal decomposition in a first order quark hadron phase transition
We investigate the scenario of homogeneous nucleation for a first order
quark-hadron phase transition in a rapidly expanding background of quark gluon
plasma. Using an improved preexponential factor for homogeneous nucleation
rate, we solve a set of coupled equations to study the hadronization and the
hydrodynamical evolution of the matter. It is found that significant
supercooling is possible before hadronization begins. This study also suggests
that spinodal decomposition competes with nucleation and may provide an
alternative mechanism for phase conversion particularly if the transition is
strong enough and the medium is nonviscous. For weak enough transition, the
phase conversion may still proceed via homogeneous nucleation.Comment: LaTeX, 10 pages with 7 Postscript figures, more discussions and
referencese added, typos correcte
Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming
金沢大学医薬保健研究域医学系Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection. © 2006 IEEE
Selective quantum evolution of a qubit state due to continuous measurement
We consider a two-level quantum system (qubit) which is continuously measured
by a detector. The information provided by the detector is taken into account
to describe the evolution during a particular realization of measurement
process. We discuss the Bayesian formalism for such ``selective'' evolution of
an individual qubit and apply it to several solid-state setups. In particular,
we show how to suppress the qubit decoherence using continuous measurement and
the feedback loop.Comment: 15 pages (including 9 figures
- …