1,289 research outputs found
Star and cluster formation in extreme environments
Current empirical evidence on the star-formation processes in the extreme,
high-pressure environments induced by galaxy encounters (mostly based on
high-resolution Hubble Space Telescope observations) strongly suggests that
star CLUSTER formation is an important and perhaps even the dominant mode of
star formation in such starburst events. The sizes, luminosities, and mass
estimates of the young massive star clusters (YMCs) are entirely consistent
with what is expected for young Milky Way-type globular clusters (GCs). Recent
evidence lends support to the scenario that GCs, which were once thought to be
the oldest building blocks of galaxies, are still forming today. Here, I
present a novel empirical approach to assess the shape of the
initial-to-current YMC mass functions, and hence their possible survival
chances for a Hubble time.Comment: 6 pages, LaTeX with Kluwer style files included; to appear in:
"Starbursts - from 30 Doradus to Lyman break galaxies" (Cambridge UK,
September 2004; talk summary), Astrophysics & Space Science Library, eds. de
Grijs R., Gonzalez Delgado R.M., Kluwer: Dordrech
Anisotropic Release of the Residual Zero-point Entropy in the Spin Ice Compound Dy2Ti2O7: Kagome-ice Behavior
We report the specific heat and entropy of single crystals of the spin ice
compound Dy2Ti2O7 at temperatures down to 0.35 K. We apply magnetic fields
along the four characteristic directions: [100], [110], [111] and [112].
Because of Ising anisotropy, we observe anisotropic release of the residual
zero-point entropy, attributable to the difference in frustration
dimensionality. In the high magnetic field along these four directions, the
residual entropy is almost fully released and the activation entropy reaches
Rln2. However, in the intermediate field region, the entropy in fields along
the [111] direction is different from those for the other three field
directions. For the [111] direction the frustration structure changes from that
of three-dimensional(3D) pyrochlore to that of two-dimensional(2D) Kagome-like
lattice with constraint due to the ice rule, leading to different values of
zero-point entropy.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Low-Loss All-Optical Zeno Switch in a Microdisk Cavity Using EIT
We present theoretical results of a low-loss all-optical switch based on
electromagnetically induced transparency and the classical Zeno effect in a
microdisk resonator. We show that a control beam can modify the atomic
absorption of the evanescent field which suppresses the cavity field buildup
and alters the path of a weak signal beam. We predict more than 35 dB of
switching contrast with less than 0.1 dB loss using just 2 micro-Watts of
control-beam power for signal beams with less than single photon intensities
inside the cavity.Comment: Updated with new references, corrected Eq 2a, and added introductory
text. 7 pages, 5 figures, 3 table
Multiorder coherent Raman scattering of a quantum probe field
We study the multiorder coherent Raman scattering of a quantum probe field in
a far-off-resonance medium with a prepared coherence. Under the conditions of
negligible dispersion and limited bandwidth, we derive a Bessel-function
solution for the sideband field operators. We analytically and numerically
calculate various quantum statistical characteristics of the sideband fields.
We show that the multiorder coherent Raman process can replicate the
statistical properties of a single-mode quantum probe field into a broad comb
of generated Raman sidebands. We also study the mixing and modulation of photon
statistical properties in the case of two-mode input. We show that the prepared
Raman coherence and the medium length can be used as control parameters to
switch a sideband field from one type of photon statistics to another type, or
from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.
Predicted Infrared and Raman Spectra for Neutral Ti_8C_12 Isomers
Using a density-functional based algorithm, the full IR and Raman spectra are
calculated for the neutral Ti_8C_12 cluster assuming geometries of Th, Td, D2d
and C3v symmetry. The Th pentagonal dodecahedron is found to be dynamically
unstable. The calculated properties of the relaxed structure having C3v
symmetry are found to be in excellent agreement with experimental gas phase
infrared results, ionization potential and electron affinity measurements.
Consequently, the results presented may be used as a reference for further
experimental characterization using vibrational spectroscopy.Comment: 6 pages, 5 figures. Physical Review A, 2002 (in press
The young star cluster system of the Antennae galaxies
“The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0103-xThe study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (such as the luminosity function; LF) of YSC systems are still being debated. Here, we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.Peer reviewe
Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime
The generation of an entangled coherent state is one of the most important
ingredients of quantum information processing using coherent states. Recently,
numerous schemes to achieve this task have been proposed. In order to generate
travelling-wave entangled coherent states, cross phase modulation, optimized by
optical Kerr effect enhancement in a dense medium in an electromagnetically
induced transparency (EIT) regime, seems to be very promising. In this
scenario, we propose a fully quantized model of a double-EIT scheme recently
proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833
(2002)]: the quantization step is performed adopting a fully Hamiltonian
approach. This allows us to write effective equations of motion for two
interacting quantum fields of light that show how the dynamics of one field
depends on the photon-number operator of the other. The preparation of a
Schr\"odinger cat state, which is a superposition of two distinct coherent
states, is briefly exposed. This is based on non-linear interaction via
double-EIT of two light fields (initially prepared in coherent states) and on a
detection step performed using a beam splitter and two photodetectors.
In order to show the entanglement of a generated entangled coherent state, we
suggest to measure the joint quadrature variance of the field. We show that the
entangled coherent states satisfy the sufficient condition for entanglement
based on quadrature variance measurement. We also show how robust our scheme is
against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section
Understanding Paramagnetic Spin Correlations in the Spin-Liquid Pyrochlore Tb2Ti2O7
Recent elastic and inelastic neutron scattering studies of the highly
frustrated pyrochlore antiferromagnet Tb2Ti2O7 have shown some very intriguing
features that cannot be modeled by the local classical Ising model,
naively expected to describe this system at low temperatures. Using the random
phase approximation to take into account fluctuations between the ground state
doublet and the first excited doublet, we successfully describe the elastic
neutron scattering pattern and dispersion relations in Tb2Ti2O7,
semi-quantitatively consistent with experimental observations.Comment: revtex4, 4 pages, 1 Color+ 2 BW figure
Bell-inequality violation with "thermal" radiation
The model of a quantum-optical device for a conditional preparation of
entangled states from input mixed states is presented. It is demonstrated that
even thermal or pseudo-thermal radiation can be entangled in such a way, that
Bell-inequalities are violated
- …