53,699 research outputs found

    Geologic considerations in underground coal mining system design

    Get PDF
    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach

    A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs

    Full text link
    Sorting is at the core of many database operations, such as index creation, sort-merge joins, and user-requested output sorting. As GPUs are emerging as a promising platform to accelerate various operations, sorting on GPUs becomes a viable endeavour. Over the past few years, several improvements have been proposed for sorting on GPUs, leading to the first radix sort implementations that achieve a sorting rate of over one billion 32-bit keys per second. Yet, state-of-the-art approaches are heavily memory bandwidth-bound, as they require substantially more memory transfers than their CPU-based counterparts. Our work proposes a novel approach that almost halves the amount of memory transfers and, therefore, considerably lifts the memory bandwidth limitation. Being able to sort two gigabytes of eight-byte records in as little as 50 milliseconds, our approach achieves a 2.32-fold improvement over the state-of-the-art GPU-based radix sort for uniform distributions, sustaining a minimum speed-up of no less than a factor of 1.66 for skewed distributions. To address inputs that either do not reside on the GPU or exceed the available device memory, we build on our efficient GPU sorting approach with a pipelined heterogeneous sorting algorithm that mitigates the overhead associated with PCIe data transfers. Comparing the end-to-end sorting performance to the state-of-the-art CPU-based radix sort running 16 threads, our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for sorting 64 GB key-value pairs with a skewed and a uniform distribution, respectively.Comment: 16 pages, accepted at SIGMOD 201

    Nanotube field of C60 molecules in carbon nanotubes: atomistic versus continuous tube approach

    Full text link
    We calculate the van der Waals energy of a C60 molecule when it is encapsulated in a single-walled carbon nanotube with discrete atomistic structure. orientational degrees of freedom and longitudinal displacements of the molecule are taken into account, and several achiral and chiral carbon nanotubes are considered. A comparison with earlier work where the tube was approximated by a continuous cylindrical distribution of carbon atoms is made. We find that such an approximation is valid for high and intermediate tube radii; for low tube radii, minor chirality effects come into play. Three molecular orientational regimes are found when varying the nanotube radius.Comment: 14 pages, 9 figures, accepted for publication in Phys. Rev.

    Spatial and spatio-temporal patterns in a cell-haptotaxis model

    Get PDF
    We investigate a cell-haptotaxis model for the generation of spatial and spatio-temporal patterns in one dimension. We analyse the steady state problem for specific boundary conditions and show the existence of spatially hetero-geneous steady states. A linear analysis shows that stability is lost through a Hopf bifurcation. We carry out a nonlinear multi-time scale perturbation procedure to study the evolution of the resulting spatio-temporal patterns. We also analyse the model in a parameter domain wherein it exhibits a singular dispersion relation

    Competition Between Exchange and Anisotropy in a Pyrochlore Ferromagnet

    Full text link
    The Ising-like spin ice model, with a macroscopically degenerate ground state, has been shown to be approximated by several real materials. Here we investigate a model related to spin ice, in which the Ising spins are replaced by classical Heisenberg spins. These populate a cubic pyrochlore lattice and are coupled to nearest neighbours by a ferromagnetic exchange term J and to the local axes by a single-ion anisotropy term D. The near neighbour spin ice model corresponds to the case D/J infinite. For finite D/J we find that the macroscopic degeneracy of spin ice is broken and the ground state is magnetically ordered into a four-sublattice structure. The transition to this state is first-order for D/J > 5 and second-order for D/J < 5 with the two regions separated by a tricritical point. We investigate the magnetic phase diagram with an applied field along [1,0,0] and show that it can be considered analogous to that of a ferroelectric.Comment: 7 pages, 4 figure

    Fluctuations of the heat flux of a one-dimensional hard particle gas

    Full text link
    Momentum-conserving one-dimensional models are known to exhibit anomalous Fourier's law, with a thermal conductivity varying as a power law of the system size. Here we measure, by numerical simulations, several cumulants of the heat flux of a one-dimensional hard particle gas. We find that the cumulants, like the conductivity, vary as power laws of the system size. Our results also indicate that cumulants higher than the second follow different power laws when one compares the ring geometry at equilibrium and the linear case in contact with two heat baths (at equal or unequal temperatures). keywords: current fluctuations, anomalous Fourier law, hard particle gasComment: 5 figure

    Evolution of pion HBT radii from RHIC to LHC -- Predictions from ideal hydrodynamics

    Full text link
    We present hydrodynamic predictions for the charged pion HBT radii for a range of initial conditions covering those presumably reached in Pb+Pb collisions at the LHC. We study central (b=0) and semi-central (b=7fm) collisions and show the expected increase of the HBT radii and their azimuthal oscillations. The predicted trends in the oscillation amplitudes reflect a change of the final source shape from out-of-plane to in-plane deformation as the initial entropy density is increased.Comment: 6 pages, incl. 5 figures. Contribution to the CERN Theory Institute Workshop "Heavy Ion Collisions at the LHC -- Last Call for Predictions", CERN, 14 May - 8 June 2007, to appear in J. Phys.

    Magnetic susceptibility of diluted pyrochlore and SCGO antiferromagnets

    Full text link
    We investigate the magnetic susceptibility of the classical Heisenberg antiferromagnet with nearest-neighbour interactions on the geometrically frustrated pyrochlore lattice, for a pure system and in the presence of dilution with nonmagnetic ions. Using the fact that the correlation length in this system for small dilution is always short, we obtain an approximate but accurate expression for the magnetic susceptibility at all temperatures. We extend this theory to the compound SrCr_{9-9x}Ga_{3+9x}O_{19} (SCGO) and provide an explanation of the phenomenological model recently proposed by Schiffer and Daruka [Phys. Rev. B56, 13712 (1997)].Comment: 4 pages, Latex, 4 postscript figures automatically include

    Detection of Earth-like Planets Using Apodized Telescopes

    Get PDF
    The mission of NASA's Terrestrial Planet Finder (TPF) is to find Earth-like planets orbiting other stars and characterize the atmospheres of these planets using spectroscopy. Because of the enormous brightness ratio between the star and the reflected light from the planet, techniques must be found to reduce the brightness of the star. The current favorite approach to doing this is with interferometry: interfering the light from two or more separated telescopes with a π\pi phase shift, nulling out the starlight. While this technique can, in principle, achieve the required dynamic range, building a space interferometer that has the necessary characteristics poses immense technical difficulties. In this paper, we suggest a much simpler approach to achieving the required dynamic range. By simply adjusting the transmissive shape of a telescope aperture, the intensity in large regions around the stellar image can be reduced nearly to zero. This approach could lead to construction of a TPF using conventional technologies, requiring space optics on a much smaller scale than the current TPF approach.Comment: Accepted for publication in ApJ Letters, 9 pages, 6 figure
    • …
    corecore