802 research outputs found

    Evaluation of Upper Extremity Movement Characteristics during Standardized Pediatric Functional Assessment with a Kinect®-based Markerless Motion Analysis System

    Get PDF
    A recently developed and evaluated upper extremity (UE) markerless motion analysis system based on the Microsoft® Kinect® has potential for improving functional assessment of patients with hemiplegic cerebral palsy. 12 typically-developing adolescents ages 12-17 were evaluated using both the Kinect-based system and the Shriners Hospitals for Children Upper Extremity Evaluation (SHUEE), a validated measure of UE motion. The study established population means of UE kinematic parameters for each activity. Statistical correlation analysis was used to identify key kinematic metrics used to develop automatic scoring algorithms. The Kinect motion analysis platform is technically sound and can be applied to standardized task-based UE evaluation while providing enhanced sensitivity in clinical analysis and automation through scoring algorithms

    Upper Extremity Biomechanics of Children with Spinal Cord Injury during Wheelchair Mobility

    Get PDF
    While much work is being done evaluating the upper extremity joint dynamics of adult manual wheelchair propulsion, limited work has examined the pediatric population of manual wheelchair users. Our group used a custom pediatric biomechanical model to characterize the upper extremity joint dynamics of 12 children and adolescents with spinal cord injury (SCI) during wheelchair propulsion. Results show that loading appears to agree with that of adult manual wheelchair users, with the highest loading primarily seen at the glenohumeral joint. This is concerning due to the increased time of wheelchair use in the pediatric population and the impact of this loading during developmental years. This research may assist clinicians with improved mobility assessment methods, wheelchair prescription, training, and long-term care of children with orthopaedic disabilities

    Upper Extremity Biomechanical Model for Evaluation of Pediatric Joint Demands during Wheelchair Mobility

    Get PDF
    Current methods for evaluating upper extremity (UE) dynamics during pediatric wheelchair use are limited. We propose a new model to characterize UE joint kinematics and kinetics during pediatric wheelchair mobility. The bilateral model is comprised of the thorax, clavicle, scapula, upper arm, forearm, and hand segments. The modeled joints include: sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist. The model is complete and is currently undergoing pilot studies for clinical application. Results may provide considerable quantitative insight into pediatric UE joint dynamics to improve wheelchair prescription, training and long term care of children with orthopaedic disabilities

    Biomechanical Model for Evaluation of Pediatric Upper Extremity Joint Dynamics During Wheelchair Mobility

    Get PDF
    Pediatric manual wheelchair users (MWU) require high joint demands on their upper extremity (UE) during wheelchair mobility, leading them to be at risk of developing pain and pathology. Studies have examined UE biomechanics during wheelchair mobility in the adult population; however, current methods for evaluating UE joint dynamics of pediatric MWU are limited. An inverse dynamics model is proposed to characterize three-dimensional UE joint kinematics and kinetics during pediatric wheelchair mobility using a SmartWheel instrumented handrim system. The bilateral model comprises thorax, clavicle, scapula, upper arm, forearm, and hand segments and includes the sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist joints. A single 17 year-old male with a C7 spinal cord injury (SCI) was evaluated while propelling his wheelchair across a 15-meter walkway. The subject exhibited wrist extension angles up to 60°, large elbow ranges of motion and peak glenohumeral joint forces up to 10% body weight. Statistically significant asymmetry of the wrist, elbow, glenohumeral and acromioclavicular joints was detected by the model. As demonstrated, the custom bilateral UE pediatric model may provide considerable quantitative insight into UE joint dynamics to improve wheelchair prescription, training, rehabilitation and long-term care of children with orthopedic disabilities. Further research is warranted to evaluate pediatric wheelchair mobility in a larger population of children with SCI to investigate correlations to pain, function and transitional changes to adulthood

    Multistep Measurement of Plantar Pressure Alterations Using Metatarsal Pads

    Get PDF
    Metatarsal pads are frequently prescribed for nonoperative management of metatarsalgia due to various etiologies. When appropriately placed, they are effective in reducing pressures under the metatarsal heads on the plantar surface of the foot. Despite the positive clinical reports that have been cited, there are no quantitative studies documenting the load redistribution effects of these pads during multiple step usage within the shoe environment. The objective of this study was to assess changes in plantar pressure metrics resulting from pad use. Ten normal adult male subjects were tested during a series of 400-step trials. Pressures were recorded from eight discrete plantar locations at the hindfoot, midfoot, and forefoot regions of the insole. Significant increases in peak pressures, contact durations, and pressure-time integrals were noted at the metatarsal shaft region with pad use (P ≤ .05). Statistically significant changes in metric values were not seen at the other plantar locations, although metatarsal pad use resulted in mild decreases in mean peak pressures at the first and second metatarsal heads and slight increases laterally. Contact durations decreased at all metatarsal head locations, while pressure-time integrals decreased at the first, second, third, and fourth metatarsal heads. A slight increase in pressure-time integrals was seen at the fifth metatarsal head. The redistribution of plantar pressures tended to relate not only to the dimensions of the metatarsal pads, but also to foot size, anatomic foot configuration, and pad location. Knowledge of these parameters, along with careful control of pad dimensions and placement, allows use of the metatarsal pad as an effective orthotic device for redistributing forefoot plantar pressures

    Biomechanics of Pediatric Manual Wheelchair Mobility

    Get PDF
    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI

    SMM Observations of Gamma-Ray Transients. 3: A Search for a Broadened, Redshifted Positron Annihilation Line from the Direction of the Galactic Center

    Get PDF
    We have searched for 1980-1988 Solar Maximum Mission gamma-ray spectrometer data for transient emission on timescales from hours to approximately 12 days of broad gamma-ray lines at energies approximately 400 keV, which were reported by the High Energy Astronomy Observatory (HEAO) 1 and SIGMA experiments from two sources lying toward the Galactic center. The lines have been interpreted as the product of the annihilation of positrons in pair plasmas surrounding the black hole candidate 1E 1740.7-2942 and the X-ray binary 1H 1822-371. Our results from a combined exposure of approximately 1.5 x 107s provide no convincing evidence for transient emission of this line on any timescale between approximately 9 hr and approximately 1 yr. Our 3 sigma upper limits on the line flux during approximately 12 day intervals are characteristically 4.8 x 10-3 photon/sq cm/s, while for approximately 1 day intervals our 3 sigma upper limits are characteristically 4.9 x 10-3 photon/sq cm/s. These results imply a duty cycle of less than 1.3% for the transient line measured from 1H 1822-371 during a approximately 3 week interval in 1977 by HEAO 1, and a duty cycle of less than or = 0.8% for the transient line detected in 1990 and 1992 from 1E 1740.7-2942 on approximately 1 day timescales by SIGMA

    A Search for the 478 keV Line from the Decay of Nucleosynthetic 7Be

    Get PDF
    Unstable Be-7 (half-life 53.28 days) is expected to be present in the ejecta of classical novae. If the frequency of novae in the central Galaxy is high enough, a nearly steady state abundance of Be-7 will be present there. Data accumulated during transits of the Galactic center across the aperture of the Solar Maximum Mission Gamma Ray Spectrometer have been searched for evidence of the 478 keV gamma-ray line resulting from Be-7 decay. A 3-sigma upper limit of 0.00016 gamma/sq cm s has been placed on the emission in this line from the central radian of the Galactic plane. Less stringent limits have been set on the production of Be-7 in Nova Aquilae 1982, Nova Vulpeculae 1984 No. 2, and Nova Centauri 1986 from observations with the same instrument

    SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    Get PDF
    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10-3 photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10-3 photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10-3 photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10-3 photos/sq cm/s measured by Owens et al

    Spatial and Temporal Variability of the Gamma Radiation from Earth\u27s Atmosphere During a Solar Cycle

    Get PDF
    The Solar Maximum Mission satellite’s Gamma Ray Spectrometer spent much of its 1980–1989 mission pointed at Earth, accumulating spectra of atmospheric albedo γ-rays. Its 28◦ orbit ensured that a range of geomagnetic latitudes was sampled. We measured the variation with time and cutoff rigidity of some key γ-ray lines which are diagnos-tic of the intensity of the Galactic cosmic radiation penetrating the geomagnetic cutoff and of the secondary neutrons produced in the atmosphere. We found that the inten-sities of nuclear lines at 1.6 MeV, 2.3 MeV and 4.4 MeV varied inversely with solar ac-tivity in cycles 21–22 as expected from the theory of solar modulation of cosmic rays. They were found to be strongly anticorrelated with cutoff rigidity, as expected from the theory of the cutoff, falling by a factor ∼ 3.6 between the lowest (\u3c 7 GV) and high-est (\u3e 13 GV) rigidities sampled. The solar cycle modulation was particularly marked at the lowest rigidities, reaching an amplitude of 16%
    • …
    corecore