100,634 research outputs found
Blind Detections of CO J = 1–0 in 11 H-ATLAS Galaxies at z = 2.1–3.5 with the GBT/Zpectrometer
We report measurements of the carbon monoxide ground state rotational transition (^(12)C^(16)O J = 1-0) with the Zpectrometer ultrawideband spectrometer on the 100 m diameter Green Bank Telescope. The sample comprises 11 galaxies with redshifts between z = 2.1 and 3.5 from a total sample of 24 targets identified by Herschel-ATLAS photometric colors from the SPIRE instrument. Nine of the CO measurements are new redshift determinations, substantially adding to the number of detections of galaxies with rest-frame peak submillimeter emission near 100 μm. The CO detections confirm the existence of massive gas reservoirs within these luminous dusty star-forming galaxies (DSFGs). The CO redshift distribution of the 350 μm selected galaxies is strikingly similar to the optical redshifts of 850 μm-selected submillimeter galaxies in 2.1 ≤ z ≤ 3.5. Spectroscopic redshifts break a temperature-redshift degeneracy; optically thin dust models fit to the far-infrared photometry indicate characteristic dust temperatures near 34 K for most of the galaxies we detect in CO. Detections of two warmer galaxies, and statistically significant nondetections, hint at warmer or molecule-poor DSFGs with redshifts that are difficult to determine from Herschel-SPIRE photometric colors alone. Many of the galaxies identified by H-ATLAS photometry are expected to be amplified by foreground gravitational lenses. Analysis of CO linewidths and luminosities provides a method for finding approximate gravitational lens magnifications μ from spectroscopic data alone, yielding μ ~ 3-20. Corrected for magnification, most galaxy luminosities are consistent with an ultraluminous infrared galaxy classification, but three are candidate hyper-LIRGs with luminosities greater than 10^(13) L_☉
Pwning Level Bosses in MATLAB: Student Reactions to a Game-Inspired Computational Physics Course
We investigated student reactions to two computational physics courses
incorporating several videogame-like aspects. These included use of gaming
terminology such as "levels," "weapons," and "bosses"; a game-style point
system linked to course grades; a self-paced schedule with no deadlines; a
mastery design in which only entirely correct attempts earn credit, but
students can retry until they succeed; immediate feedback via self-test code;
an assignment progression from "minions" (small, focused tasks) to "level
bosses" (integrative tasks); and believable, authentic assignment scenarios.
Through semi-structured interviews and course evaluations, we found that a
majority of students considered the courses effective and the game-like aspects
beneficial. In particular, many claimed that the point system increased their
motivation; the self-paced nature caused them to reflect on their
self-discipline; the possibility and necessity of repeating assignments until
perfect aided learning; and the authentic tasks helped them envision using
course skills in their professional futures.Comment: Accepted for publication in the proceedings of the 2014 Physics
Education Research Conference (PERC
X-ray Emission from the Radio Jet in 3C 120
We report the discovery of X-ray emission from a radio knot at a projected
distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were
obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for
the knot preclude a simple power law extension of the radio spectrum and we
calculate some of the physical parameters for thermal bremsstrahlung and
synchrotron self-Compton models. We conclude that no simple model is consistent
with the data but if the knot contains small regions with flat spectra, these
could produce the observed X-rays (via synchrotron emission) without being
detected at other wavebands.Comment: 6 pages latex plus 3 ps/eps figures. Uses 10pt.sty and
emulateapj.sty. Accepted for publication in the ApJ (6 Jan 99
Spine-sheath layer radiative interplay in subparsec-scale jets and the TeV emission from M87
Simple one-zone homogeneous synchrotron self-Compton models have severe
difficulties in explaining the TeV emission observed in the radiogalaxy M87.
Also the site of the TeV emission region is uncertain: it could be the
unresolved jet close to the nucleus, analogously to what proposed for blazars,
or an active knot, called HST-1, tens of parsec away. We explore the
possibility that the TeV emission of M87 is produced in the misaligned subpc
scale jet. We base our modelling on a structured jet, with a fast spine
surrounded by a slower layer. In this context the main site responsible for the
emission of the TeV radiation is the layer, while the (debeamed) spine accounts
for the emission from the radio to the GeV band: therefore we expect a more
complex correlation with the TeV component than that expected in one-zone
scenarios, in which both components are produced by the same region. Observed
from small angles, the spine would dominate the emission, with an overall
Spectral Energy Distribution close to those of BL Lac objects with a
synchrotron peak located at low energy (LBLs).Comment: 5 pages, 2 figures. Accepted for publication in MNRAS Letter
Impact of flying qualities on mission effectiveness for helicopter air combat, volume 1
A computer simulation to investigate the impact of flying qualities on mission effectiveness is described. The objective of the study was to relate the effects of flying qualities, such as precision of flight path control and pilot workload, to the ability of a single Scout helicopter, or helicopter team, to accomplish a specified anti-armor mission successfully. The model of the actual engagement is a Monte Carlo simulation that has the capability to assess the effects of helicopter characteristics, numbers, tactics and weaponization on the force's ability to accomplish a specific mission against a specified threat as a function of realistic tactical factors. A key feature of this program is a simulation of micro-terrain features and their effects on detection, exposure, and masking for nap-of-the-earth (NOE) flight
Single pilot IFR accident data analysis
The aircraft accident data recorded and maintained by the National Transportation Safety Board for 1964 to 1979 were analyzed to determine what problems exist in the general aviation single pilot instrument flight rules environment. A previous study conducted in 1978 for the years 1964 to 1975 provided a basis for comparison. The purpose was to determine what changes, if any, have occurred in trends and cause-effect relationships reported in the earlier study. The increasing numbers have been tied to measures of activity to produce accident rates which in turn were analyzed in terms of change. Where anomalies or unusually high accident rates were encountered, further analysis was conducted to isolate pertinent patterns of cause factors and/or experience levels of involved pilots. The bulk of the effort addresses accidents in the landing phase of operations. A detailed analysis was performed on controlled/uncontrolled collisions and their unique attributes delineated. Estimates of day vs. night general aviation activity and accident rates were obtained
Storage of light in atomic vapor
We report an experiment in which a light pulse is decelerated and trapped in
a vapor of Rb atoms, stored for a controlled period of time, and then released
on demand. We accomplish this storage of light by dynamically reducing the
group velocity of the light pulse to zero, so that the coherent excitation of
the light is reversibly mapped into a collective Zeeman (spin) coherence of the
Rb vapor
- …
