38,077 research outputs found

    Observation of Nonlocal Modulation with Entangled Photons

    Full text link
    We demonstrate a new type of quantum mechanical correlation where phase modulators at distant locations, acting on the photons of an entangled pair, interfere to determine the apparent depth of modulation. When the modulators have the same phase, the modulation depth doubles; when oppositely phased, the modulators negate each other.Comment: 4 pages, 4 figure

    The International Effects of China's Growth, Trade and Ecucation Booms

    Get PDF
    China’s international trade flows have increased by 500% since 1992, far outstripping GDP growth. Likewise tertiary education enrollments have increased by 300%. We simulate these changes using a multi-sector growth model of the Chinese and USA economies. A decade of trade biased growth in China is found to have a large effect on the USA economy – raising GDP approximately 3-4.5 percentage points. We also show that the trade bias in China’s growth accounts for more than half of the observed growth in tertiary enrolments in China. In contrast neutral growth has practically no effect on USA incomes or China’s stock of skilled labour. Finally the simulations reveal that China’s education boom per se has practically no long run impact on the USA economy. The results thus indicate that the pattern of productivity growth in exports sectors, as might be caused by falling trade costs, has been critical in transmitting benefits of Chinese growth to the world economy. They also point to an important link between falling trade costs and human capital formation.Economic Growth, China, Human Capital, Trade Costs

    Parametric Self-Oscillation via Resonantly Enhanced Multiwave Mixing

    Get PDF
    We demonstrate an efficient nonlinear process in which Stokes and anti-Stokes components are generated spontaneously in a Raman-like, near resonant media driven by low power counter-propagating fields. Oscillation of this kind does not require optical cavity and can be viewed as a spontaneous formation of atomic coherence grating

    Weibull-type limiting distribution for replicative systems

    Full text link
    The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson branching process describing simple replicative systems. The shape of the resulting distribution, about which little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which takes a universal form. We also find that the branching process can be mapped into a process of aggregation of clusters. In the branching and aggregation process, the number of events considered for branching and aggregation grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time with a given success probability.Comment: 6 pages and 5 figure

    Laser cooling and control of excitations in superfluid helium

    Full text link
    Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.Comment: 6 pages, 4 figures. Supplementary information attache

    Electro-Optic Modulation of Single Photons

    Full text link
    We use the Stokes photon of a biphoton pair to set the time origin for electro-optic modulation of the wave function of the anti-Stokes photon thereby allowing arbitrary phase and amplitude modulation. We demonstrate conditional single-photon wave functions composed of several pulses, or instead, having gaussian or exponential shapes

    The development of experimental techniques for the study of helicopter rotor noise

    Get PDF
    The features of existing wind tunnels involved in noise studies are discussed. The acoustic characteristics of the MIT low noise open jet wind tunnel are obtained by employing calibration techniques: one technique is to measure the decay of sound pressure with distance in the far field; the other technique is to utilize a speaker, which was calibrated, as a sound source. The sound pressure level versus frequency was obtained in the wind tunnel chamber and compared with the corresponding calibrated values. Fiberglas board-block units were installed on the chamber interior. The free field was increased significantly after this treatment and the chamber cut-off frequency was reduced to 160 Hz from the original designed 250 Hz. The flow field characteristics of the rotor-tunnel configuration were studied by using flow visualization techniques. The influence of open-jet shear layer on the sound transmission was studied by using an Aeolian tone as the sound source. A dynamometer system was designed to measure the steady and low harmonics of the rotor thrust. A theoretical Mach number scaling formula was developed to scale the rotational noise and blade slap noise data of model rotors to full scale helicopter rotors

    Optical clocks based on ultra-narrow three-photon resonances in alkaline earth atoms

    Full text link
    A sharp resonance line that appears in three-photon transitions between the 1S0^{1}S_{0} and 3P0^{3}P_{0} states of alkaline earth and Yb atoms is proposed as an optical frequency standard. This proposal permits the use of the even isotopes, in which the clock transition is narrower than in proposed clocks using the odd isotopes and the energy interval is not affected by external magnetic fields or the polarization of trapping light. The method has the unique feature that the width and rate of the clock transition can be continuously adjusted from the MHzMHz level to sub-mHzmHz without loss of signal amplitude by varying the intensities of the three optical beams. Doppler and recoil effects can be eliminated by proper alignment of the three optical beams or by point confinement in a lattice trap. The three beams can be mixed to produce the optical frequency corresponding to the 3P0^{3}P_{0} - 1S0^{1}S_{0} clock interval.Comment: 10 pages, 4 figures, submitted to PR

    Microphotonic Forces From Superfluid Flow

    Full text link
    In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly one order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces demonstrated here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, and have the potential to allow efficient transfer of electromagnetic energy to motional kinetic energy.Comment: 5 pages, 6 figure
    • …
    corecore