17,570 research outputs found
Economic Incentives Versus Command and Control: What's the Best Approach for Solving Environmental Problems?
Now, decades after the first environmental laws were passed in this country, policymakers face many choices when seeking to solve environmental problems. Will taxing polluters for their discharges be more effective than fining them for not meeting certain emissions standards? Will a regulatory agency find it less costly to enforce a ban or oversee a system of tradable permits? Which strategy will reduce a pollutant the quickest? Clearly, there are no "one-size-fits-all" answers. Many factors enter into the decision to favor either policies that lean more toward economic incentives (EI) and toward direct regulation, commonly referred to as command-and-control (CAC) policy. Underlying determinants include a country's governmental and regulatory infrastructure, along with the nature of the environmental problem itself. Even with these contextual factors to consider, we thought it would be useful to compare EI and CAC policies and their outcomes in a real-world setting. To do this, we looked at six environmental problems that the United States and at least one European country dealt with differently (see box on page 14.) For each problem, one approach was more of an EI measure, while the other relied more on CAC. For example, to reduce point-source industrial water pollution, the Netherlands implemented a system of fees for organic pollutants (EI), while the United States established a system of guidelines and permits (CAC). It turned out, in fact, that most policies had at least some elements of both approaches, but we categorized them as EI or CAC based on their dominant features. We then asked researchers who had previously studied these policies on either side of the Atlantic to update or prepare new case studies. We analyzed the 12 case studies (two for each of the six environmental problems) against a list of hypotheses frequently made for or against EI and CAC, such as which instrument is more effective or imposes less administrative burden
Experimental cold-flow evaluation of a ram air cooled plug nozzle concept for afterburning turbojet engines
A concept for plug nozzles cooled by inlet ram air is presented. Experimental data obtained with a small scale model, 21.59-cm (8.5-in.) diameter, in a static altitude facility demonstrated high thrust performance and excellent pumping characteristics. Tests were made at nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Effect of plug size, outer shroud length, and varying amounts of secondary flow were investigated
Thrust performance of isolated plug nozzles with two types of 40-spoke noise suppressor at Mach numbers from 0 to 0.45
Plug nozzles with two types of 40-spoke noise suppressor were tested at free-stream Mach numbers from 0 to 0.45 and over a range of nozzle pressure ratios from 1.5 to 4.0. In additon, an unsuppressed plug nozzle and a Supersonic Tunnel Association nozzle were also tested to provide baseline levels of thrust performance. The unsuppressed plug nozzle had an efficiency of 98 percent at an assumed takeoff pressure ratio of 3.0 and at Mach 0.36. At the same condition the suppressor nozzles had efficiencies of approximately 83.5 percent
Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom
The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada
Cold-flow performance of several variations of a ram-air-cooled plug nozzle for supersonic-cruise aircraft
Experimental data were obtained with a 21.59 cm (8.5 in.) diameter cold-flow model in a static altitude facility to determine the thrust and pumping characteristics of several variations of a ram-air-cooled plug nozzle. Tests were conducted over a range of nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Primary throat area was also varied to simulate afterburner on and off. Effect of plug size, outer shroud length, primary nozzle geometry, and varying amounts of secondary flow were investigated. At a supersonic cruise pressure ratio of 27, nozzle efficiencies were 99.7 percent for the best configurations
- …