72 research outputs found

    Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life.</p> <p>Results</p> <p>To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites.</p> <p>Conclusions</p> <p>These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.</p

    Röntgenkristallographische und biochemische Untersuchungen zur Funktion der Cytochrome-c-Oxidase

    No full text

    The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction

    No full text
    Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome c oxidase from Paracoccus denitrificans were observed. The three histidine Cu(B) ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the "histidine cycle" mechanisms formulated previously

    The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction

    No full text
    Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane (“proton pumping”). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome coxidase from Paracoccus denitrificans were observed. The three histidine CuB ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the “histidine cycle” mechanisms formulated previously

    Site-specific modification of ED-B-targeting antibody using intein-fusion technology

    No full text
    Abstract Background A promising new approach in cancer therapy is the use of tumor specific antibodies coupled to cytotoxic agents. Currently these immunoconjugates are prepared by rather unspecific coupling chemistries, resulting in heterogeneous products. As the drug load is a key parameter for the antitumor activity, site-specific strategies are desired. Expressed protein ligation (EPL) and protein trans-splicing (PTS) are methods for the specific C-terminal modification of a target protein. Both include the expression as an intein fusion protein, followed by the exchange of the intein for a functionalized moiety. Results A full-length IgG specific for fibronectin ED-B was expressed as fusion protein with an intein (Mxe GyrA or Npu DnaE) attached to each heavy chain. In vitro protocols were established to site-specifically modify the antibodies in high yields by EPL or PTS, respectively. Although reducing conditions had to be employed during the process, the integrity or affinity of the antibody was not affected. The protocols were used to prepare immunoconjugates containing two biotin molecules per antibody, attached to the C-termini of the heavy chains. Conclusion Full-length antibodies can be efficiently and site-specifically modified at the C-termini of their heavy chains by intein-fusion technologies. The described protocols can be used to prepare immunoconjugates of high homogeneity and with a defined drug load of two. The attachment to the C-termini is expected to retain the affinity and effector functions of the antibodies.</p

    Cytochrome c Oxidase: Structure and Spectroscopy

    No full text
    Cytochrome c oxidase, the terminal enzyme of the respiratory chains of mitochondria and aerobic bacteria, catalyzes electron transfer from cytochrome c to molecular oxygen, reducing the latter to water. Electron transfer is coupled to proton translocation across the membrane, resulting in a proton and charge gradient that is then employed by the F0F-ATPase to synthesize ATP. Over the last years, substantial progress has been made in our understanding of the structure and function of this enzyme. Spectroscopic techniques such as EPR, absorbance and resonance Raman spectroscopy, in combination with site-directed mutagenesis work, have been successfully applied to elucidate the nature of the cofactors and their ligands, to identify key residues involved in proton transfer, and to gain insight into the catalytic cycle and the structures of its intermediates. Recently, the crystal structures of a bacterial and a mitochondrial cytochrome c oxidase have been determined. In this review, we provide an overview of the crystal structures, summarize recent spectroscopic work, and combine structural and spectroscopic data in discussing mechanistic aspects of the enzyme. For the latter, we focus on the structure of the oxygen intermediates, proton-transfer pathways, and the much-debated issue of how electron transfer in the enzyme might be coupled to proton translocation

    1.3 Ă… X-ray structure of an antibody Fv fragment used for induced membrane-protein crystallization

    No full text
    The antibody Fv fragment 7E2 has previously been employed in the induced crystallization of the integral membrane protein cytochrome c oxidase from Paracoccus denitrificans. The 1.3 A X-ray structure of the uncomplexed antibody fragment reveals conserved water networks on the surfaces of the framework regions. A novel consensus motif for water coordination, XX(S/T), is found along the edges of the beta-sandwich, where a water molecule forms hydrogen bonds to the carbonyl O atom of a residue at position N and the OG hydroxyl groups of conserved serines or threonines at position N + 2. Multiple conformations were found in the hydrophobic core for residues IleL21, LeuL33 and the disulfide bridges. An internal water molecule that is compatible with only one of the three packing states of the VL core suggests local 'breathing' of the variable domain. TrpH47, a conserved key residue of the VH/VL interface, is crucially involved in the formation of the antigen-binding site by adopting a novel conformation that specifically stabilizes the non-canonical CDR-L3 loop. Finally, a comparison with 7E2-cytochrome c oxidase complexes demonstrates that binding of this membrane-bound antigen proceeds without major conformational changes of the 7E2 antibody fragment

    Structure at 2.7 Ă… resolution of the Paracoccus denitrificans two subunit cytochrome c oxidase complexed with an antibody F<sub>v</sub> fragment

    No full text
    The aa3 type cytochrome c oxidase consisting of the core subunits I and II only was isolated from the soil bacterium Paracoccus denitrificans and crystallized as complex with a monoclonal antibody Fv fragment. Crystals could be grown in the presence of a number of different nonionic detergents. However, only undecyl-β-d-maltoside and cyclohexyl-hexyl-β-d-maltoside yielded well-ordered crystals suitable for high resolution x-ray crystallographic studies. The crystals belong to space group P212121 and diffract x-rays to at least 2.5 Å (1 Å = 0.1 nm) resolution using synchrotron radiation. The structure was determined to a resolution of 2.7 Å using molecular replacement and refined to a crystallographic R-factor of 20.5% (Rfree = 25.9%). The refined model includes subunits I and II and the 2 chains of the Fv fragment, 2 heme A molecules, 3 copper atoms, and 1 Mg/Mn atom, a new metal (Ca) binding site, 52 tentatively identified water molecules, and 9 detergent molecules. Only four of the water molecules are located in the cytoplasmic half of cytochrome c oxidase. Most of them are near the interface of subunits I and II. Several waters form a hydrogen-bonded cluster, including the heme propionates and the Mg/Mn binding site. The Fv fragment binds to the periplasmic polar domain of subunit II and is critically involved in the formation of the crystal lattice. The crystallization procedure is well reproducible and will allow for the analysis of the structures of mechanistically interesting mutant cytochrome c oxidases
    • …
    corecore