11,514 research outputs found

    Quantifying meltwater refreezing along a transect of sites on the Greenland ice sheet

    Get PDF
    On the Greenland ice sheet, a significant quantity of surface meltwater refreezes within the firn, creating uncertainty in surface mass balance estimates. This refreezing has the potential to buffer seasonal runoff to future increases in melting, but direct measurement of the process remains difficult. We present a method for quantifying refreezing at point locations using in situ firn temperature observations. A time series of sub-hourly firn temperature profiles were collected over the course of two melt seasons from 2007 to 2009 along a transect of 11 sites in the accumulation zone of Greenland. Seasonal changes in temperature profiles combined with heat flux estimates based on high-temporal-resolution temperature gradients enable us to isolate the heat released by refreezing using conservation of energy. Our method is verified from winter data when no refreezing takes place, and uncertainty is estimated using a Monte Carlo technique. While we limit our method to a subsection of firn between depths of 1 and 10 m, our refreezing estimates appear to differ significantly from model-based estimates. Furthermore, results indicate that a significant amount of refreezing takes place at depths greater than 1m and that lateral migration of meltwater significantly complicates the relationship between total surface melt and total refreezing

    TEXES Observations of M Supergiants: Dynamics and Thermodynamics of Wind Acceleration

    Full text link
    We have detected [Fe II] 17.94 um and 24.52 um emission from a sample of M supergiants using TEXES on the IRTF. These low opacity emission lines are resolved at R = 50, 000 and provide new diagnostics of the dynamics and thermodynamics of the stellar wind acceleration zone. The [Fe II] lines, from the first excited term, are sensitive to the warm plasma where energy is deposited into the extended atmosphere to form the chromosphere and wind outflow. These diagnostics complement previous KAO and ISO observations which were sensitive to the cooler and more extended circumstellar envelopes. The turbulent velocities, Vturb is about 12 to 13 km/s, observed in the [Fe II] forbidden lines are found to be a common property of our sample, and are less than that derived from the hotter chromospheric C II] 2325 Angstrom lines observed in alpha Ori, where Vturb is about 17 to 19 km/s. For the first time, we have dynamically resolved the motions of the dominant cool atmospheric component discovered in alpha Ori from multi-wavelength radio interferometry by Lim et al. (1998). Surprisingly, the emission centroids are quite Gaussian and at rest with respect to the M supergiants. These constraints combined with model calculations of the infrared emission line fluxes for alpha Ori imply that the warm material has a low outflow velocity and is located close to the star. We have also detected narrow [Fe I] 24.04 um emission that confirms that Fe II is the dominant ionization state in alpha Ori's extended atmosphere.Comment: 79 pages including 10 figures and 2 appendices. Accepted by Ap

    Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States

    Get PDF
    We assess changes in runoff timing over the last 55 years at 21 gages unaffected by human influences, in the headwaters of the Columbia-Missouri Rivers. Linear regression models and tests for significance that control for ‘‘false discoveries’’ of many tests, combined with a conceptual runoff response model, were used to examine the detailed structure of spring runoff timing. We conclude that only about one third of the gages exhibit significant trends with time but over half of the gages tested show significant relationships with discharge. Therefore, runoff timing is more significantly correlated with annual discharge than with time. This result differs from previous studies of runoff in the western USA that equate linear time trends to a response to global warming. Our results imply that predicting future snowmelt runoff in the northern Rockies will require linking climate mechanisms controlling precipitation, rather than projecting response to simple linear increases in temperature

    Timing of present and future snowmelt from high elevations in northwest Montana

    Get PDF
    The sensitivity of snowmelt-driven water supply to climate variability and change is difficult to assess in the mountain west, where strong climatic gradients coupled with complex topography are sampled by sparse ground measurements. We developed a model which ingests daily satellite imagery and meteorological data and is suitable for areas \u3e1000 km2, yet captures spatial variability of snow accumulation and melt in steep mountain terrain.We applied the model for the years 2000–2008 to a 2900 km2 snowmelt-dominated watershed in NW Montana. We found that \u3e25% of the basin’s snow water equivalent (SWE) accumulates above the highest measurement station and \u3e70% accumulates above the mean elevation of surrounding SNOTEL stations. Consequently, scaling point measurements of SWEto describe basin conditions could lead to significant misrepresentation of basin snow. Simulations imply that present-day temperature variability causes measures of snowmelt timing to vary by over 4 weeks from year-to-year. Temperature variability causes a larger spread in snowmelt timing in a warmer climate. On average, snowmelt timing occurs 3 weeks earlier in late 21st century projections, with about 25% of future conditions observed today

    Water vapor on supergiants. The 12 micron TEXES spectra of mu Cephei

    Full text link
    Several recent papers have argued for warm, semi-detached, molecular layers surrounding red giant and supergiant stars, a concept known as a MOLsphere. Spectroscopic and interferometric analyses have often corroborated this general picture. Here, we present high-resolution spectroscopic data of pure rotational lines of water vapor at 12 microns for the supergiant mu Cephei. This star has often been used to test the concept of molecular layers around supergiants. Given the prediction of an isothermal, optically thick water-vapor layer in Local Thermodynamic Equilibrium around the star (MOLsphere), we expected the 12 micron lines to be in emission or at least in absorption but filled in by emission from the molecular layer around the star. Our data, however, show the contrary; we find definite absorption. Thus, our data do not easily fit into the suggested isothermal MOLsphere scenario. The 12 micron lines, therefore, put new, strong constraints on the MOLsphere concept and on the nature of water seen in signatures across the spectra of early M supergiants. We also find that the absorption is even stronger than that calculated from a standard, spherically symmetric model photosphere without any surrounding layers. A cool model photosphere, representing cool outer layers is, however, able to reproduce the lines, but this model does not account for water vapor emission at 6 microns. Thus, a unified model for water vapor on mu Cephei appears to be lacking. It does seem necessary to model the underlying photospheres of these supergiants in their whole complexity. The strong water vapor lines clearly reveal inadequacies of classical model atmospheres.Comment: Accepted for publication in the Astrophysical Journa

    The Interpreter In An Undergraduate Compilers Course

    Full text link
    An undergraduate compilers course poses significant challenges to students, in both the conceptual richness of the major components and in the programming effort necessary to implement them. In this paper, I argue that a related architecture, the interpreter, serves as an effective conceptual framework in which to teach some of the later stages of the compiler pipeline. This framework can serve both to unify some of the major concepts that are taught in a typical undergraduate course and to structure the implementation of a semester-long compiler project.Comment: Final version to appear in SIGCSE '1

    SOFIA/EXES Observations of Water Absorption in the Protostar AFGL 2591 at High Spectral Resolution

    Get PDF
    We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu_2 band of H2O, two by transitions in the first vibrationally excited nu_2 band of H2O, and one by a transition in the nu_2 band of H2{18}O. Among the detected transitions is the nu_2 1(1,1)--0(0,0) line which probes the lowest lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas, or that the absorption arises within the 6 micron emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed absorption lines are N(H2O)=(1.3+-0.3)*10^{19} cm^{-2} and T=640+-80 K.Comment: 6 pages, 3 figures, 1 table, accepted for publication in ApJ
    • …
    corecore