6,625 research outputs found

    Late Ordovician Mass Extinction: Earth, fire and ice

    Get PDF
    The Late Ordovician Mass Extinction was the earliest of the ‘big’ five extinction events and the earliest to affect the trajectory of metazoan life. Two phases have been identified near the start of the Hirnantian period and in the middle. It was a massive taxonomic extinction, a weak phylogenetic extinction and a relatively benign ecological extinction. A rapid cooling, triggering a major ice age that reduced the temperature of surface waters, prompted a drop in sea level of some 100 m and introduced toxic bottom waters onto the shelves. These symptoms of more fundamental planetary processes have been associated with a range of factors with an underlying driver identified as volcanicity. Volcanic eruptions, and other products, may have extended back in time to at least the Sandbian and early Katian, suggesting the extinctions were more protracted and influential than hitherto documented

    The Irish Ordovician brachiopod fauna: A taxonomic renaissance

    Get PDF
    Despite its small areal extent, the island of Ireland exposes eight Caledonian tectonic terranes; six of them contain Ordovician brachiopod assemblages. These terranes record the early phases and destruction of the Iapetus Ocean through the occurrence of latitude-sensitive brachiopod faunas during the Middle Ordovician and early Late Ordovician; more cosmopolitan faunas characterized the later Ordovician

    Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice

    Full text link
    Small body size has been associated with long life span in four stocks of mutant dwarf mice, and in two varieties of dietary restriction in rodents. In this study, small body size at ages 2–24 months was shown to be a significant predictor of life span in a genetically heterogeneous mouse population derived from four common inbred mouse strains. The association was strongest for weights measured early in adult life, and somewhat weaker, though still statistically significant, at later ages. The effect was seen both in males and females, and was replicated in an independent population of the same genetic background. Body size at ages 2–4 months was correlated with levels of serum leptin in both males and females, and with levels of IGF-I and thyroid hormone in females only. A genome scan showed the presence of polymorphic alleles on chromosomes 2, 6, 7 and 15 with significant effects on body weight at 2–4 months, at 10–12 months, or at both age ranges, showing that weight gain trajectory in this stock is under complex genetic control. Because it provides the earliest known predictor of life span, body weight may be usefully included in screens for induced mutations that alter aging. The evidence that weight in 2-month-old mice is a significant predictor of life span suggests that at least some of the lethal diseases of old age can be timed by factors that influence growth rate in juvenile rodents.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75162/1/j.1474-9728.2002.00006.x.pd

    Late Ordovician and early Silurian virgianid and stricklandioid brachiopods from North Greenland: implications for a warm‐water faunal province

    Get PDF
    An unusually rich and diverse suite of virgianid brachiopods, hitherto poorly known, is systematically described here for the first time from the Ordovician–Silurian boundary interval (late Katian – Aeronian) of North Greenland. The Late Ordovician virgianids comprise typical taxa of the warm‐water Tcherskidium fauna (e.g. Tcherskidium tenuicostatum, Proconchidium schleyi, Holorhynchus giganteus and Deloprosopus dawesi sp. nov.). Among the early Silurian taxa, Virgiana hursti sp. nov. occurs as abundant shell beds, similar to other congeneric species in Laurentia, but has somewhat larger internal skeletal structures, albeit not as extravagantly developed as in the late Katian virgianids; Borealoides balderi gen. et sp. nov. shows extreme thickening of the shell wall and internal structures, approaching the extravagant calcification of Katian virgianids. The highly distinctive mid‐Aeronian stricklandioid brachiopod genus, Kulumbella, characterized by a shell with criss‐cross (divaricate) ribbing, also occurs in North Greenland, represented by K. heimdali sp. nov., which has the largest and most strongly biconvex shells for the genus. Palaeogeographically, the Late Ordovician virgianid fauna of Laurentia was highly distinct, confined to the low–mid tropical latitudes north of the palaeoequator. In comparison, the early Silurian (Rhuddanian) Virgiana and some related taxa in Laurentia spanned the tropics of both hemispheres, forming extensive shell beds in carbonate basins, although Borealis and Borealoides gen. nov. remained confined largely to the northern hemisphere, suggesting a certain level of provincialism extending into the earliest Silurian. A palaeoecological preference for warm‐water carbonate settings would explain the unusual abundance and richness of the virgianid faunas in North Greenland

    Foreword

    Get PDF

    The Ordovician System: From overlapping unit stratotypes to Global Boundary Stratotype Sections and Points

    Get PDF
    For nearly a century the Ordovician System was hidden as Murchison and Sedgwick tussled over the overlapping ground between their Silurian and Cambrian systems. The Ordovician is, in fact, one of the longest of the geological periods, characterised by major magmatic and plate tectonic activity; the roles of microcontinents and volcanic archipelagos were significant in shaping the Ordovician planet and the evolution of its biotas, associated with an immense biodiversification, significant fluctuations in climate and sea levels, and the first Phanerozoic mass extinction of marine invertebrates. The period was unique in being thalassocratic; epicontinental seas had a wider reach than during any other geological period. The land areas were restricted to isolated microblocks of archipelagos of various sizes with low relief, with rivers traversing gentle gradients, carrying sparse terrigenous material seaward. It is an ancient world with few parallels elsewhere in the Phanerozoic, and little in common with Holocene ecosystems and environments. The Ordovician System was introduced by Charles Lapworth as a solution to the stratotypes of overlapping units loosely defined by Adam Sedgwick for the Cambrian and by Roderick Murchison for the Silurian. Following a period of intensive research into all the key regions of the globe, unit stratotypes in the type areas of England and Wales have been replaced by seven global stages and three series based on Global Boundary Stratotype Sections and Points, enhancing the definition of these chronostratigraphic units and facilitating global correlation. As a consequence, the biological and geological events during the period can be recognised, and the magnitude and significance of originations and extinctions understood. A global synthesis of successions in Europe (Geological Society, London, Special Publications, 532) and the rest of the world (Geological Society, London, Special Publications, 533) has emphasised the importance of a universal language for Ordovician chronostratigraphy and its dividends

    The Sirius Passet LagerstĂ€tte of North Greenland—A geochemical window on early Cambrian low‐oxygen environments and ecosystems

    Get PDF
    The early Cambrian Sirius Passet fauna of northernmost Greenland (Cambrian Series 2, Stage 3) contains exceptionally preserved soft tissues that provide an important window to early animal evolution, while the surrounding sediment holds critical data on the palaeodepositional water‐column chemistry. The present study combines palaeontological data with a multiproxy geochemical approach based on samples collected in situ at high stratigraphic resolution from Sirius Passet. After careful consideration of chemical alterations during burial, our results demonstrate that fossil preservation and biodiversity show significant correlation with iron enrichments (FeHR/FeT), trace metal behaviour (V/Al), and changes in nitrogen cycling (ή15N). These data, together with Mo/Al and the preservation of organic carbon (TOC), are consistent with a water column that was transiently low in oxygen concentration, or even intermittently anoxic. When compared with the biogeochemical characteristics of modern oxygen minimum zones (OMZs), geochemical and palaeontological data collectively suggest that oxygen concentrations as low as 0.2–0.4 ml/L restricted bioturbation but not the development of a largely nektobenthic community of predators and scavengers. We envisage for the Sirius Passet biota a depositional setting where anoxic water column conditions developed and passed over the depositional site, possibly in association with sea‐level change, and where this early Cambrian biota was established in conditions with very low oxygen

    A new interpretation of Pikaia reveals the origins of the chordate body plan.

    Get PDF
    Our understanding of the evolutionary origin of Chordata, one of the most disparate and ecologically significant animal phyla, is hindered by a lack of unambiguous stem-group relatives. Problematic Cambrian fossils that have been considered as candidate chordates include vetulicolians, Yunnanozoon, and the iconic Pikaia. However, their phylogenetic placement has remained poorly constrained, impeding reconstructions of character evolution along the chordate stem lineage. Here we reinterpret the morphology of Pikaia, providing evidence for a gut canal and, crucially, a dorsal nerve cord-a robust chordate synapomorphy. The identification of these structures underpins a new anatomical model of Pikaia that shows that this fossil was previously interpreted upside down. We reveal a myomere configuration intermediate between amphioxus and vertebrates and establish morphological links between Yunnanozoon, Pikaia, and uncontroversial chordates. In this light, we perform a new phylogenetic analysis, using a revised, comprehensive deuterostome dataset, and establish a chordate stem lineage. We resolve vetulicolians as a paraphyletic group comprising the earliest diverging stem chordates, subtending a grade of more derived stem-group chordates comprising Yunnanozoon and Pikaia. Our phylogenetic results reveal the stepwise acquisition of characters diagnostic of the chordate crown group. In addition, they chart a phase in early chordate evolution defined by the gradual integration of the pharyngeal region with a segmented axial musculature, supporting classical evolutionary-developmental hypotheses of chordate origins and revealing a "lost chapter" in the history of the phylum. [Abstract copyright: Crown Copyright © 2024. Published by Elsevier Inc. All rights reserved.

    Low temperature decreases bone mass in mice: Implications for humans

    Full text link
    ObjectivesHumans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold‐induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT). Here we test two hypotheses: (1) low temperature induces impaired cortical and trabecular bone acquisition and (2) UCP1, a marker of NST in BAT, increases in proportion to degree of low‐temperature exposure.MethodsWe housed wildtype C57BL/6J male mice in pairs at 26 °C (thermoneutrality), 22 °C (standard), and 20 °C (cool) from 3 weeks to 6 or 12 weeks of age with access to food and water ad libitum (N = 8/group).ResultsCool housed mice ate more but had lower body fat at 20 °C versus 26 °C. Mice at 20 °C had markedly lower distal femur trabecular bone volume fraction, thickness, and connectivity density and lower midshaft femur cortical bone area fraction versus mice at 26 °C (p < .05 for all). UCP1 expression in BAT was inversely related to temperature.DiscussionThese results support the hypothesis that low temperature was detrimental to bone mass acquisition. Nonshivering thermogenesis in brown adipose tissue increased in proportion to low‐temperature exposure but was insufficient to prevent bone loss. These data show that chronic exposure to low temperature impairs bone architecture, suggesting climate may contribute to phenotypic variation in humans and other hominins.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146428/1/ajpa23684.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146428/2/ajpa23684_am.pd
    • 

    corecore