15 research outputs found

    High-Throughput Label-Free Isolation of Heterogeneous Circulating Tumor Cells and CTC Clusters from Non-Small-Cell Lung Cancer Patients.

    Get PDF
    (1) Background: Circulating tumor cell (CTC) clusters are emerging as clinically significant harbingers of metastases in solid organ cancers. Prior to engaging these CTC clusters in animal models of metastases, it is imperative for technology to identify them with high sensitivity. These clusters often present heterogeneous surface markers and current methods for isolation of clusters may fall short. (2) Methods: We applied an inertial microfluidic Labyrinth device for high-throughput, biomarker-independent, size-based isolation of CTCs/CTC clusters from patients with metastatic non-small-cell lung cancer (NSCLC). (3) Results: Using Labyrinth, CTCs (PanCK+/DAPI+/CD45-) were isolated from patients (n = 25). Heterogeneous CTC populations, including CTCs expressing epithelial (EpCAM), mesenchymal (Vimentin) or both markers were detected. CTCs were isolated from 100% of patients (417 +/- 1023 CTCs/mL). EpCAM- CTCs were significantly greater than EpCAM+ CTCs. Cell clusters of \u3e/=2 CTCs were observed in 96% of patients-of which, 75% were EpCAM-. CTCs revealed identical genetic aberrations as the primary tumor for RET, ROS1, and ALK genes using fluorescence in situ hybridization (FISH) analysis. (4) Conclusions: The Labyrinth device recovered heterogeneous CTCs in 100% and CTC clusters in 96% of patients with metastatic NSCLC. The majority of recovered CTCs/clusters were EpCAM-, suggesting that these would have been missed using traditional antibody-based capture methods

    Separable Bilayer Microfiltration Device for Viable Label-free Enrichment of Circulating Tumour Cells

    Get PDF
    The analysis of circulating tumour cells (CTCs) in cancer patients could provide important information for therapeutic management. Enrichment of viable CTCs could permit performance of functional analyses on CTCs to broaden understanding of metastatic disease. However, this has not been widely accomplished. Addressing this challenge, we present a separable bilayer (SB) microfilter for viable size-based CTC capture. Unlike other single-layer CTC microfilters, the precise gap between the two layers and the architecture of pore alignment result in drastic reduction in mechanical stress on CTCs, capturing them viably. Using multiple cancer cell lines spiked in healthy donor blood, the SB microfilter demonstrated high capture efficiency (78–83%), high retention of cell viability (71–74%), high tumour cell enrichment against leukocytes (1.7–2 × 10^3), and widespread ability to establish cultures post-capture (100% of cell lines tested). In a metastatic mouse model, SB microfilters successfully enriched viable mouse CTCs from 0.4–0.6 mL whole mouse blood samples and established in vitro cultures for further genetic and functional analysis. Our preliminary studies reflect the efficacy of the SB microfilter device to efficiently and reliably enrich viable CTCs in animal model studies, constituting an exciting technology for new insights in cancer research

    Circulating tumor cells in melanoma patients.

    Get PDF
    Circulating tumor cells (CTCs) are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X) from blood of melanoma patients using a simple centrifugation device (OncoQuick), and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF) were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively) compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001). There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001), and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50%) stained for both pan-cytokeratin (KRT) markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14). Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA) may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs). The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids, and their role in metastatic progression

    Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling

    No full text
    Summary: During development, the mammary gland undergoes extensive remodeling driven by stem cells. Breast cancers are also hierarchically organized and driven by cancer stem cells characterized by CD44+CD24low/− or aldehyde dehydrogenase (ALDH) expression. These markers identify mesenchymal and epithelial populations both capable of tumor initiation. Less is known about these populations in non-cancerous mammary glands. From RNA sequencing, ALDH+ and ALDH−CD44+CD24− human mammary cells have epithelial-like and mesenchymal-like characteristics, respectively, with some co-expressing ALDH+ and CD44+CD24− by flow cytometry. At the single-cell level, these cells have the greatest mammosphere-forming capacity and express high levels of stemness and epithelial-to-mesenchymal transition-associated genes including ID1, SOX2, TWIST1, and ZEB2. We further identify single ALDH+ cells with a hybrid epithelial/mesenchymal phenotype that express genes associated with aggressive triple-negative breast cancers. These results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity. : In this article, Colacino and colleagues use flow-cytometry-sorted populations and single-cell analyses to investigate human mammary stem cells. They discover unexpected phenotypic and functional heterogeneity at the single-cell level, including a subpopulation of ALDH+ stem cells with a hybrid epithelial/mesenchymal phenotype and triple-negative breast cancer-like gene expression pattern. Keywords: breast stem cell, single-cell RNA, epithelial, mesenchymal, hybrid, RNA-se

    Marker RNA levels for TYR and MITF in melanoma patients vs. healthy controls.

    No full text
    <p>Blood was fractionated as described using OncoQuick columns, RNA was purified from the enriched CTC fractions, and TYR and MITF RNA levels were quantified by QPCR. Panel A shows results with blood drawn on the same day as excision of melanomas, or the corresponding healthy controls. Panel B shows results with blood drawn one week after excision. Staging information for melanoma patients is given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041052#pone-0041052-t002" target="_blank">Table 2</a>. The Y-axis depicts RNA copy numbers per ml of blood. Shown to the far right of Panel A are calculated transcript numbers for 2 patients with squamous cell carcinoma of skin and for a patient with neurofibromatosis (left to right, respectively).</p

    Receiver Operating Characteristic Analysis for MIF.

    No full text
    <p>ROC analysis was performed using the R Package software version 1.0-4 as described <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041052#pone.0041052-Team1" target="_blank">[53]</a>.</p

    RNA recoveries in the “Enriched CTC” fractions in melanoma patients vs. healthy controls.

    No full text
    <p>There is a statistically significant difference between RNA yield levels of melanoma patients and the healthy controls (p = 0.005) based on the nonparametric Wilcoxon rank-sum test. There was no statistically significant correlation between melanoma stage and RNA yield. This was true for scale 1 (stage 1,2,3, or 4; p = 0.739) and scale 2 (where the scale separates 0, IA, IB, IIA, IIB, IIC, etc.; p = 0.948).</p

    Marker RNA levels for MLANA and MIF in melanoma patients vs. healthy controls.

    No full text
    <p>Blood was fractionated as described using OncoQuick columns, RNA was purified from the enriched CTC fractions, and MLANA and MIF RNA levels were quantified by QPCR. Panel A shows results with blood drawn on the same day as excision of melanomas, or the corresponding healthy controls. Panel B shows results with blood drawn one week after excision. Melanoma patients and healthy controls are as noted on the X-axis, and Staging information for melanoma patients is presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041052#pone-0041052-t002" target="_blank">Table 2</a>. The Y-axis depicts RNA copy numbers per ml of blood. Shown to the far right of Panel A are calculated transcript numbers for 2 patients with squamous cell carcinoma of skin and for a patient with neurofibromatosis (left to right, respectively).</p
    corecore