35 research outputs found

    Diagnosis and management of retroperitoneal ancient schwannomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ancient schwannomas are degenerate peripheral nerve sheath tumors that very rarely occur in the retroperitoneum. They generally reach large proportions before producing symptoms due to mass effect. We describe three cases of retroperitoneal ancient schwannomas and discuss the diagnosis and management of these tumors.</p> <p>Case presentations</p> <p>Three female patients with retroperitoneal ancient schwannomas were reviewed. One patient presented with several weeks of upper abdominal pain and lower chest discomfort, whereas back pain and leg pain with associated weakness were predominant symptoms in the remaining two. Abdominal imaging findings demonstrated heterogeneous masses in the retroperitoneum with demarcated margins, concerning for malignancy. The patients successfully had radical excision of their tumors. Histological examination showed encapsulated tumors that displayed alternating areas of dense cellularity and areas of myxoid matrix consistent with a diagnosis of ancient schwannoma.</p> <p>Conclusion</p> <p>A diagnosis of ancient schwannoma should be entertained for any heterogeneous, well encapsulated mass in the retroperitoneum. In these cases less radical surgical resection should be considered as malignant transformation of these tumors is extremely rare and recurrence is uncommon following excision.</p

    KRAS amplification in metastatic colon cancer is associated with a history of inflammatory bowel disease and may confer resistance to anti-EGFR therapy

    No full text
    Mutations in RAS occur in 30-50% of metastatic colorectal carcinomas (mCRCs) and correlate with resistance to anti-EGFR therapy. Consequently, mCRC biomarker guidelines state RAS mutational testing should be performed when considering EGFR inhibitor treatment. However, a small subset of mCRCs are reported to harbor RAS amplification. In order to elucidate the clinicopathologic features and anti-EGFR treatment response associated with RAS amplification, we retrospectively reviewed a large cohort of mCRC patients that underwent targeted next-generation sequencing and copy number analysis for KRAS, NRAS, HRAS, BRAF, and PIK3CA. Molecular testing was performed on 1286 consecutive mCRC from 1271 patients as part of routine clinical care, and results were correlated with clinicopathologic findings, mismatch repair (MMR) status and follow-up. RAS amplification was detected in 22 (2%) mCRCs and included: KRAS, NRAS, and HRAS for 15, 5, and 2 cases, respectively (6-21 gene copies). Patients with a KRAS-amplified mCRC were more likely to report a history of inflammatory bowel disease (p \u3c 0.001). In contrast, mutations in KRAS were associated with older patient age, right-sided colonic origin, low-grade differentiation, mucinous histology, and MMR proficiency (p ≤ 0.017). Four patients with a KRAS-amplified mCRC and no concomitant RAS/BRAF/PIK3CA mutations received EGFR inhibitor-based therapy, and none demonstrated a clinicoradiographic response. The therapeutic impact of RAS amplification was further evaluated using a separate, multi-institutional cohort of 23 patients. Eight of 23 patients with KRAS-amplified mCRC received anti-EGFR therapy and all 8 patients exhibited disease progression on treatment. Although the number of KRAS-amplified mCRCs is limited, our data suggest the clinicopathologic features associated with mCRC harboring a KRAS amplification are distinct from those associated with a KRAS mutation. However, both alterations seem to confer EGFR inhibitor resistance and, therefore, RAS testing to include copy number analyses may be of consideration in the treatment of mCRC

    Targeted Next-Generation Sequencing Improves the Prognostication of Patients with Disseminated Appendiceal Mucinous Neoplasms (Pseudomyxoma Peritonei)

    No full text
    BACKGROUND: Appendiceal mucinous neoplasms (AMNs) with disseminated disease (pseudomyxoma peritonei) are heterogeneous tumors with variable clinicopathologic behavior. Despite the development of prognostic systems, objective biomarkers are needed to stratify patients. With the advent of next-generation sequencing (NGS), it remains unclear if molecular testing can improve the evaluation of disseminated AMN patients. METHODS: Targeted NGS was performed for 183 patients and correlated with clinicopathologic features to include American Joint Committee on Cancer/World Health Organization (AJCC/WHO) histologic grade, peritoneal cancer index (PCI), completeness of cytoreduction (CC) score, and overall survival (OS). RESULTS: Genomic alterations were identified for 179 (98%) disseminated AMNs. Excluding mitogen-activated protein kinase genes and GNAS due to their ubiquitous nature, collective genomic alterations in TP53, SMAD4, CDKN2A, and the mTOR genes were associated with older mean age, higher AJCC/WHO histologic grade, lymphovascular invasion, perineural invasion, regional lymph node metastasis, and lower mean PCI (p \u3c 0.040). Patients harboring TP53, SMAD4, ATM, CDKN2A, and/or mTOR gene alterations were found to have lower OS rates of 55% at 5 years and 14% at 10 years, compared with 88% at 5 years and 88% at 10 years for patients without the aforementioned alterations (p \u3c 0.001). Based on univariate and multivariate analyses, genomic alterations in TP53, SMAD4, ATM, CDKN2A, and/or the mTOR genes in disseminated AMNs were a negative prognostic factor for OS and independent of AJCC/WHO histologic grade, PCI, CC score, and hyperthermic intraperitoneal chemotherapy treatment (p = 0.006). CONCLUSIONS: Targeted NGS improves the prognostic assessment of patients with disseminated AMNs and identifies patients who may require increased surveillance and/or aggressive management
    corecore