95 research outputs found
Frost Tillage for Soil Management in the Northeastern USA
Tillage during the winter is typically considered impossible, despite its desirability in some cases. Soil freezing results in net upward movement of water to the freezing zone which facilitates primary tillage or incorporation of amendments. these can be performed during a time window when the frost layer is sufficiently thin to be ripped and the underlying soil is tillable. We evaluated the feasibility of frost tillage and performed an agronomic comparison with spring-tilled soil. Soil conditions conductive to frost tillage occurred during three time windows in the 1991/1992 and two in the 1992/1993 winter at Ithaca, NY. Frost tillage resulted in a rough soil surface, even after thawing, thereby presumably facilitating water infiltration. Soil drying was improvised in the spring of 1992, but not in 1993 after a very wet period had caused soil settling. Residue cover was greater with frost tillage in 1993 compared to spring tillage. Yields were similar in both 1992 and 1993. Frost tillage may be an attractive management option to shift fall and spring field work (primary tillage or manure application/injection) to the winter. In addition, winter manure incorporation may reduce spring runoff losses
Building Soils for Better Crops: Ecological Management for Healthy Soils
The 4th edition of Building Soils for Better Crops is a one-of-a-kind, practical guide to ecological soil management. It provides step-by-step information on soil-improving practices as well as in-depth background—from what soil is to the importance of organic matter. It will show you how different physical, chemical and biological factors of the soil interconnect, and how management practices impact them to make your soil healthy and resilient or unhealthy and vulnerable to degradation.
Case studies of farmers from across the country provide inspiring examples of how soil—and whole farms—have been renewed through these techniques. A must-read for farmers, educators and students alike
TMEM106B a Novel Risk Factor for Frontotemporal Lobar Degeneration
Recently, the first genome-wide association (GWA) study in frontotemporal lobar degeneration (FTLD) identified common genetic variability at the TMEM106B gene on chromosome 7p21.3 as a potential important risk-modifying factor for FTLD with pathologic inclusions of TAR DNA-binding protein (FTLD-TDP), the most common pathological subtype in FTLD. To gather additional evidence for the implication of TMEM106B in FTLD risk, multiple replication studies in geographically distinct populations were set up. In this review, we revise all recent replication and follow-up studies of the FTLD-TDP GWA study and summarize the growing body of evidence that establish TMEM106B as a bona fide risk factor for FTLD. With the TMEM106B gene, a new player has been identified in the pathogenic cascade of FTLD which could hold important implications for the future development of disease-modifying therapies
Sensitivity of brain MRI and neurological examination for detection of upper motor neurone degeneration in amyotrophic lateral sclerosis
OBJECTIVES: To investigate sensitivity of brain MRI and neurological examination for detection of upper motor neuron (UMN) degeneration in patients with amyotrophic lateral sclerosis (ALS). METHODS: We studied 192 patients with ALS and 314 controls longitudinally. All patients visited our centre twice and underwent full neurological examination and brain MRI. At each visit, we assessed UMN degeneration by measuring motor cortex thickness (CT) and pyramidal tract fibre density (FD) corresponding to five body regions (bulbar region and limbs). For each body region, we measured degree of clinical UMN and lower motor neuron (LMN) symptom burden using a validated scoring system. RESULTS: We found deterioration over time of CT of motor regions (p≤0.0081) and progression of UMN signs of bulbar region and left arm (p≤0.04). FD was discriminative between controls and patients with moderate/severe UMN signs (all regions, p≤0.034), but did not change longitudinally. Higher clinical UMN burden correlated with reduced CT, but not lower FD, for the bulbar region (p=2.2×10-10) and legs (p≤0.025). In the arms, we found that severe LMN signs may reduce the detectability of UMN signs (p≤0.043). With MRI, UMN degeneration was detectable before UMN signs became clinically evident (CT: p=1.1×10-10, FD: p=6.3×10-4). Motor CT, but not FD, deteriorated more than UMN signs during the study period. CONCLUSIONS: Motor CT is a more sensitive measure of UMN degeneration than UMN signs. Motor CT and pyramidal tract FD are discriminative between patients and controls. Brain MRI can monitor UMN degeneration before signs become clinically evident. These findings promote MRI as a potential biomarker for UMN progression in clinical trials in ALS
Longitudinal Effects of Asymptomatic C9orf72 Carriership on Brain Morphology
Objective: We investigated effects of C9orf72 repeat expansion and gene expression on longitudinal cerebral changes before symptom onset. Methods: We enrolled 79 asymptomatic family members (AFMs) from 9 families with C9orf72 repeat expansion. Twenty-eight AFMs carried the mutation (C9+). Participants had up to 3 magnetic resonance imaging (MRI) scans, after which we compared motor cortex and motor tracts between C9+ and C9− AFMs using mixed effects models, incorporating kinship to correct for familial relations and lessen effects of other genetic factors. We also compared cortical, subcortical, cerebellar, and connectome structural measurements in a hypothesis-free analysis. We correlated regional C9orf72 expression in donor brains with the pattern of cortical thinning in C9+ AFMs using meta-regression. For comparison, we included 42 C9+ and 439 C9− patients with amyotrophic lateral sclerosis (ALS) in this analysis. Results: C9+ AFM motor cortex had less gyrification and was thinner than in C9− AFMs, without differences in motor tracts. Whole brain analysis revealed thinner cortex and less gyrification in parietal, occipital, and temporal regions, smaller thalami and right hippocampus, and affected frontotemporal connections. Thinning of bilateral precentral, precuneus, and left superior parietal cortex was faster in C9+ than in C9− AFMs. Higher C9orf72 expression correlated with thinner cortex in both C9+ AFMs and C9+ ALS patients. Interpretation: In asymptomatic C9orf72 repeat expansion carriers, brain MRI reveals widespread features suggestive of impaired neurodevelopment, along with faster decline of motor and parietal cortex than found in normal aging. C9orf72 expression might play a role in cortical development, and consequently explain the specific brain abnormalities of mutation carriers. ANN NEUROL 2023;93:668–680
The distinct traits of the UNC13A polymorphism in amyotrophic lateral sclerosis
OBJECTIVE: The rs12608932 single nucleotide polymorphism in UNC13A is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) susceptibility, and may underlie differences in treatment response. We aimed to characterize the clinical, cognitive, behavioral, and neuroimaging phenotype of UNC13A in patients with ALS. METHODS: We included 2,216 patients with ALS without a C9orf72 mutation to identify clinical characteristics associated with the UNC13A polymorphism. A subcohort of 428 patients with ALS was used to study cognitive and behavioral profiles, and 375 patients to study neuroimaging characteristics. Associations were analyzed under an additive genetic model. RESULTS: Genotyping rs12608932 resulted in 854 A/A, 988 A/C, and 374 C/C genotypes. The C allele was associated with a higher age at symptom onset (median years A/A 63.5, A/C 65.6, and C/C 65.5; p < 0.001), more frequent bulbar onset (A/A 29.6%, A/C 31.8%, and C/C 43.1%; p < 0.001), higher incidences of ALS-FTD (A/A 4.3%, A/C 5.2%, and C/C 9.5%; p = 0.003), lower forced vital capacity at diagnosis (median percentage A/A 92.0, A/C 90.0, and C/C 86.5; p < 0.001), and a shorter survival (median in months A/A 33.3, A.C 30.7, and C/C 26.6; p < 0.001). UNC13A was associated with lower scores on ALS-specific cognition tests (means A/A 79.5, A/C 78.1, and C/C 76.6; p = 0.037), and more frequent behavioral disturbances (A/A 16.7%, A/C 24.4%, and C/C 27.7%; p = 0.045). Thinner left inferior temporal and right fusiform cortex were associated with the UNC13A single nucleotide polymorphism (SNP; p = 0.045 and p = 0.036). INTERPRETATION: Phenotypical distinctions associated with UNC13A make it an important factor to take into account in clinical trial design, studies on cognition and behavior, and prognostic counseling. ANN NEUROL 2020;88:796-806
MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
Objective: The purpose of this study was to identify subtypes of amyotrophic lateral sclerosis (ALS) by comparing patterns of neurodegeneration using brain magnetic resonance imaging (MRI) and explore their phenotypes. Methods: We performed T1-weighted and diffusion tensor imaging in 488 clinically well-characterized patients with ALS and 338 control subjects. Measurements of whole-brain cortical thickness and white matter connectome fractional anisotropy were adjusted for disease-unrelated variation. A probabilistic network-based clustering algorithm was used to divide patients into subgroups of similar neurodegeneration patterns. Clinical characteristics and cognitive profiles were assessed for each subgroup. In total, 512 follow-up scans were used to validate clustering results longitudinally. Results: The clustering algorithm divided patients with ALS into 3 subgroups of 187, 163, and 138 patients. All subgroups displayed involvement of the precentral gyrus and are characterized, respectively, by (1) pure motor involvement (pure motor cluster [PM]), (2) orbitofrontal and temporal involvement (frontotemporal cluster [FT]), and (3) involvement of the posterior cingulate cortex, parietal white matter, temporal operculum, and cerebellum (cingulate-parietal–temporal cluster [CPT]). These subgroups had significantly distinct clinical profiles regarding male-to-female ratio, age at symptom onset, and frequency of bulbar symptom onset. FT and CPT revealed higher rates of cognitive impairment on the Edinburgh cognitive and behavioral ALS screen (ECAS). Longitudinally, clustering remained stable: at 90.4% of their follow-up visits, patients clustered in the same subgroup as their baseline visit. Interpretation: ALS can manifest itself in 3 main patterns of cerebral neurodegeneration, each associated with distinct clinical characteristics and cognitive profiles. Besides the pure motor and frontotemporal dementia (FTD)-like variants of ALS, a new neuroimaging phenotype has emerged, characterized by posterior cingulate, parietal, temporal, and cerebellar involvement. ANN NEUROL 2022;92:1030–1045
Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement
Nitrogen fixation by the Haber–Bosch process has more than doubled the amount of fixed N on Earth, significantly influencing the global N cycle. Much of this fixed N is made into N fertilizer that is used to produce nearly half of the world’s food. Too much of the N fertilizer pollutes air and water when it is lost from agroecosystems through volatilization, denitrification, leaching, and runoff. Most of the N fertilizer used in the United States is applied to corn (Zea mays L.), and the profitability and environmental footprint of corn production is directly tied to N fertilizer applications. Accurately predicting the amount of N needed by corn, however, has proven to be challenging because of the effects of rainfall, temperature, and interactions with soil properties on the N cycle. For this reason, improving N recommendations is critical for profitable corn production and for reducing N losses to the environment. The objectives of this paper were to review current methods for estimating N needs of corn by: (i) reviewing fundamental background information about how N recommendations are created; (ii) evaluating the performance, strengths, and limitations of systems and tools used for making N fertilizer recommendations; (iii) discussing how adaptive management principles and methods can improve recommendations; and (iv) providing a framework for improving N fertilizer rate recommendations
Crystal Structure of UBA2ufd-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways
Canonical ubiquitin-like proteins (UBLs) such as ubiquitin, Sumo, NEDD8, and ISG15 are ligated to targets by E1-E2-E3 multienzyme cascades. The Sumo cascade, conserved among all eukaryotes, regulates numerous biological processes including protein localization, transcription, DNA replication, and mitosis. Sumo conjugation is initiated by the heterodimeric Aos1-Uba2 E1 enzyme (in humans called Sae1-Uba2), which activates Sumo's C-terminus, binds the dedicated E2 enzyme Ubc9, and promotes Sumo C-terminal transfer between the Uba2 and Ubc9 catalytic cysteines. To gain insights into details of E1-E2 interactions in the Sumo pathway, we determined crystal structures of the C-terminal ubiquitin fold domain (ufd) from yeast Uba2 (Uba2ufd), alone and in complex with Ubc9. The overall structures of both yeast Uba2ufd and Ubc9 superimpose well on their individual human counterparts, suggesting conservation of fundamental features of Sumo conjugation. Docking the Uba2ufd-Ubc9 and prior full-length human Uba2 structures allows generation of models for steps in Sumo transfer from Uba2 to Ubc9, and supports the notion that Uba2 undergoes remarkable conformational changes during the reaction. Comparisons to previous structures from the NEDD8 cascade demonstrate that UBL cascades generally utilize some parallel E1-E2 interaction surfaces. In addition, the structure of the Uba2ufd-Ubc9 complex reveals interactions unique to Sumo E1 and E2. Comparison with a previous Ubc9-E3 complex structure demonstrates overlap between Uba2 and E3 binding sites on Ubc9, indicating that loading with Sumo and E3-catalyzed transfer to substrates are strictly separate steps. The results suggest mechanisms establishing specificity and order in Sumo conjugation cascades
Metabolic Consequences and Vulnerability to Diet-Induced Obesity in Male Mice under Chronic Social Stress
Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies
- …