138 research outputs found

    Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    Get PDF
    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful

    Probing for Binding Regions of the FtsZ Protein Surface through Site-Directed Insertions: Discovery of Fully Functional FtsZ-Fluorescent Proteins

    Full text link
    FtsZ, a bacterial tubulin homologue, is a cytoskeletal protein that assembles into protofilaments that are one subunit thick. These protofilaments assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane and also serves as a scaffold to recruit cell wall remodeling proteins for complete cell division in vivo. One model of the Z ring proposes that protofilaments associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of Escherichia coli FtsZ by inserting either small peptides or whole fluorescent proteins (FPs). Among the four lateral surfaces on FtsZ protofilaments, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174, located on the left and right surfaces, completely blocked function, and these sites were identified as possible sites for essential lateral interactions. However, the insert at R174 did not interfere with association of protofilaments into sheets and bundles in vitro. Another goal was to find a location within FtsZ that supported insertion of FP reporter proteins while allowing the FtsZ-FPs to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by superresolution techniques. IMPORTANCE One model for the Z-ring structure proposes that protofilaments are assembled into ribbons by lateral bonds between FtsZ subunits. Our study excluded the involvement of the front and back faces of the protofilament in essential interactions in vivo but pointed to two potential lateral bond sites, on the right and left sides. We also identified an FtsZ loop where various fluorescent proteins could be inserted without blocking function; these FtsZ-FPs functioned as the sole source of FtsZ. This advance provides improved tools for all fluorescence imaging of the Z ring and may be especially important for superresolution imaging

    Imaging FtsZ Rings In Vitro by Negative-Stain EM

    Get PDF

    MICROTUBULE SURFACE LATTICE AND SUBUNIT STRUCTURE AND OBSERVATIONS ON REASSEMBLY

    Full text link

    Condensin and cohesin display different arm conformations with characteristic hinge angles

    Get PDF
    Structural maintenance of chromosomes (SMC) proteins play central roles in higher-order chromosome dynamics from bacteria to humans. In eukaryotes, two different SMC protein complexes, condensin and cohesin, regulate chromosome condensation and sister chromatid cohesion, respectively. Each of the complexes consists of a heterodimeric pair of SMC subunits and two or three non-SMC subunits. Previous studies have shown that a bacterial SMC homodimer has a symmetrical structure in which two long coiled-coil arms are connected by a flexible hinge. A catalytic domain with DNA- and ATP-binding activities is located at the distal end of each arm. We report here the visualization of vertebrate condensin and cohesin by electron microscopy. Both complexes display the two-armed structure characteristic of SMC proteins, but their conformations are remarkably different. The hinge of condensin is closed and the coiled-coil arms are placed close together. In contrast, the hinge of cohesin is wide open and the coiled-coils are spread apart from each other. The non-SMC subunits of both condensin and cohesin form a globular complex bound to the catalytic domains of the SMC heterodimers. We propose that the “closed” conformation of condensin and the “open” conformation of cohesin are important structural properties that contribute to their specialized biochemical and physiological functions

    How the kinetochore couples microtubule force and centromere stretch to move chromosomes

    Get PDF
    The Ndc80 complex (Ndc80, Nuf2, Spc24, Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus-ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule and MAP binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus-end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule binding interactions with Ndc80 and Dam1 complexes

    BtubA-BtubB Heterodimer Is an Essential Intermediate in Protofilament Assembly

    Get PDF
    BACKGROUND:BtubA and BtubB are two tubulin-like genes found in the bacterium Prosthecobacter. Our work and a previous crystal structure suggest that BtubB corresponds to alpha-tubulin and BtubA to beta-tubulin. A 1:1 mixture of the two proteins assembles into tubulin-like protofilaments, which further aggregate into pairs and bundles. The proteins also form a BtubA/B heterodimer, which appears to be a repeating subunit in the protofilament. METHODOLOGY/PRINCIPAL FINDINGS:We have designed point mutations to disrupt the longitudinal interfaces bonding subunits into protofilaments. The mutants are in two classes, within dimers and between dimers. We have characterized one mutant of each class for BtubA and BtubB. When mixed 1:1 with a wild type partner, none of the mutants were capable of assembly. An excess of between-dimer mutants could depolymerize preformed wild type polymers, while within-dimer mutants had no activity. CONCLUSIONS:An essential first step in assembly of BtubA + BtubB is formation of a heterodimer. An excess of between-dimer mutants depolymerize wild type BtubA/B by sequestering the partner wild type subunit into inactive dimers. Within-dimer mutants cannot form dimers and have no activity
    • …
    corecore