427 research outputs found

    Exploring the Spectrum of Heavy Quarkonium Hybrids with QCD Sum Rules

    Full text link
    QCD Laplace sum rules are used to calculate heavy quarkonium (charmonium and bottomonium) hybrid masses in several distinct JPCJ^{PC} channels. Previous studies of heavy quarkonium hybrids did not include the effects of dimension-six condensates, leading to unstable sum rules and unreliable mass predictions in some channels. We have updated these sum rules to include dimension-six condensates, providing new mass predictions for the spectra of heavy quarkonium hybrids. We confirm the finding of other approaches that the negative-parity JPC=(0,1,2)−+, 1−−J^{PC}=(0,1,2)^{-+},\,1^{--} states form the lightest hybrid supermultiplet and the positive-parity JPC=(0,1)+−, (0,1,2)++J^{PC}=(0,1)^{+-},\,(0,1,2)^{++} states are members of a heavier supermultiplet. Our results disfavor a pure charmonium hybrid interpretation of the X(3872)X(3872), in agreement with previous work.Comment: Presented by RTK at the Theory Canada 9 Conference, held at Wilfrid Laurier University in June 2014. Submitted for the conference proceedings to be published in the Canadian Journal of Physics. 5 pages, 1 figure. Version 2: reference added, typo correcte

    Exploring the meson spectrum with twisted mass lattice QCD

    Full text link
    Numerical simulations with access to all possible meson quantum numbers, J^{PC}, are presented using two-flavor (up and down) quenched twisted mass lattice QCD with three different lattice spacings and four different quark masses. The connection between the quantum numbers (P and C) and the symmetries of the twisted mass action are discussed, as is the connection between J and the lattice rotation group, for the 400 operators used in this study. Curve fitting of this large data set is accomplished by using an evolutionary fitting algorithm. Results are reported for conventional and exotic quantum numbers.Comment: 23 pages, 10 figures, published versio

    Linearized gravity and gauge conditions

    Get PDF
    In this paper we consider the field equations for linearized gravity and other integer spin fields on the Kerr spacetime, and more generally on spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of decoupled field equations for the linearized Weyl scalars for all spin weights and identify the gauge source functions occuring in these. For the spin weight 0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio

    Axial Vector JPC=1++J^{PC}=1^{++} Charmonium and Bottomonium Hybrid Mass Predictions with QCD Sum-Rules

    Full text link
    Axial vector (JPC=1++)(J^{PC}=1^{++}) charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important for 1−−1^{--} and 0−+0^{-+} heavy quark hybrids. An updated analysis of axial vector charmonium and bottomonium hybrids is presented, including the effects of the dimension-six gluon condensate. The axial vector charmonium and bottomonium hybrid masses are predicted to be 5.13 GeV and 11.32 GeV, respectively. We discuss the implications of this result for the charmonium-like XYZ states and the charmonium hybrid multiplet structure observed in recent lattice calculations.Comment: 10 pages, 7 figures. Updated to match published versio

    Follow-up of blood-pressure lowering and glucose control in type 2 diabetes.

    Get PDF
    BACKGROUND In the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) factorial trial, the combination of perindopril and indapamide reduced mortality among patients with type 2 diabetes, but intensive glucose control, targeting a glycated hemoglobin level of less than 6.5%, did not. We now report results of the 6-year post-trial follow-up. METHODS We invited surviving participants, who had previously been assigned to perindopril–indapamide or placebo and to intensive or standard glucose control (with the glucose-control comparison extending for an additional 6 months), to participate in a post-trial follow-up evaluation. The primary end points were death from any cause and major macrovascular events. RESULTS The baseline characteristics were similar among the 11,140 patients who originally underwent randomization and the 8494 patients who participated in the post-trial follow-up for a median of 5.9 years (blood-pressure–lowering comparison) or 5.4 years (glucose-control comparison). Between-group differences in blood pressure and glycated hemoglobin levels during the trial were no longer evident by the first post-trial visit. The reductions in the risk of death from any cause and of death from cardiovascular causes that had been observed in the group receiving active blood-pressure–lowering treatment during the trial were attenuated but significant at the end of the post-trial follow-up; the hazard ratios were 0.91 (95% confidence interval [CI], 0.84 to 0.99; P=0.03) and 0.88 (95% CI, 0.77 to 0.99; P=0.04), respectively. No differences were observed during follow-up in the risk of death from any cause or major macrovascular events between the intensive-glucose-control group and the standard-glucose-control group; the hazard ratios were 1.00 (95% CI, 0.92 to 1.08) and 1.00 (95% CI, 0.92 to 1.08), respectively. CONCLUSIONS The benefits with respect to mortality that had been observed among patients originally assigned to blood-pressure–lowering therapy were attenuated but still evident at the end of follow-up. There was no evidence that intensive glucose control during the trial led to long-term benefits with respect to mortality or macrovascular events

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ
    • …
    corecore