6 research outputs found

    Improved quality of life and body satisfaction in response to activity-based therapy in adults with spinal cord injury

    No full text
    Aim: The decline in ambulation characteristic of spinal cord injury (SCI) dramatically modifies quality of life and body composition. To examine changes in quality of life, body satisfaction, and body composition in response to 6 months of activity-based therapy in individuals with spinal cord injury (SCI).Methods: Men and women with complete or incomplete SCI (12 with tetraplegia and 13 with paraplegia; mean age and duration of injury of 35.8 ± 12.9 years and 3.8 ± 5.5 years, respectively) completed 6 months of activity-based therapy consisting of load bearing, locomotor training, whole-body resistance training, functional electrical stimulation, and assisted/unassisted walking for 8.5 ± 4.3 h/week. At baseline and at 3 and 6 months of training, body satisfaction, perceived quality of life, depression, and bodily pain were assessed using various questionnaires, and whole-body and regional fat mass and fat-free mass were determined with dual-energy X-ray absorptiometry. One-way analysis of variance with repeated measures was used to examine changes in outcome measures during the study.Results: Measures of body satisfaction (+23%) and quality of life (+8%) were improved (P < 0.05) in response to training, yet no change in depression or pain was demonstrated (P > 0.05). Percent body fat increased (P = 0.02), yet no change (P > 0.05) was seen in whole-body or regional fat free mass.Conclusion: Data suggest that chronic high-volume activity-based therapy enhances various indices of quality of life in men and women with SCI, but may be an ineffective approach to reduce fat deposition and increase muscle mass after SCI

    Efficacy of Acute Intermittent Hypoxia on Physical Function and Health Status in Humans with Spinal Cord Injury: A Brief Review

    No full text
    Spinal cord injury (SCI) results in a loss of motor and sensory function and is consequent with reductions in locomotion, leading to a relatively sedentary lifestyle which predisposes individuals to premature morbidity and mortality. Many exercise modalities have been employed to improve physical function and health status in SCI, yet they are typically expensive, require many trained clinicians to implement, and are thus relegated to specialized rehabilitation centers. These characteristics of traditional exercise-based rehabilitation in SCI make their application relatively impractical considering the time-intensive nature of these regimens and patients’ poor access to exercise. A promising approach to improve physical function in persons with SCI is exposure to acute intermittent hypoxia (IH) in the form of a small amount of sessions of brief, repeated exposures to low oxygen gas mixtures interspersed with normoxic breathing. This review summarizes the clinical application of IH in humans with SCI, describes recommended dosing and potential side effects of IH, and reviews existing data concerning the efficacy of relatively brief exposures of IH to modify health and physical function. Potential mechanisms explaining the effects of IH are also discussed. Collectively, IH appears to be a safe, time-efficient, and robust approach to enhance physical function in chronic, incomplete SCI
    corecore