2,855 research outputs found
An iterative semi-implicit scheme with robust damping
An efficient, iterative semi-implicit (SI) numerical method for the time
integration of stiff wave systems is presented. Physics-based assumptions are
used to derive a convergent iterative formulation of the SI scheme which
enables the monitoring and control of the error introduced by the SI operator.
This iteration essentially turns a semi-implicit method into a fully implicit
method. Accuracy, rather than stability, determines the timestep. The scheme is
second-order accurate and shown to be equivalent to a simple preconditioning
method. We show how the diffusion operators can be handled so as to yield the
property of robust damping, i.e., dissipating the solution at all values of the
parameter \mathcal D\dt, where is a diffusion operator and \dt
the timestep. The overall scheme remains second-order accurate even if the
advection and diffusion operators do not commute. In the limit of no physical
dissipation, and for a linear test wave problem, the method is shown to be
symplectic. The method is tested on the problem of Kinetic Alfv\'en wave
mediated magnetic reconnection. A Fourier (pseudo-spectral) representation is
used. A 2-field gyrofluid model is used and an efficacious k-space SI operator
for this problem is demonstrated. CPU speed-up factors over a CFL-limited
explicit algorithm ranging from to several hundreds are obtained,
while accurately capturing the results of an explicit integration. Possible
extension of these results to a real-space (grid) discretization is discussed.Comment: Submitted to the Journal of Computational Physics. Clarifications and
caveats in response to referees, numerical demonstration of convergence rate,
generalized symplectic proo
Development of a catalytic enantioselective synthesis of the guanacastepene and heptemerone tricyclic core
For nearly two decades, synthetic chemists have been fascinated by the structural complexity and synthetic challenges afforded by the guanacastepene and heptemerone diterpenoids. Numerous synthetic approaches to these compounds have been reported, but to date the application of enantioselective catalysis to this problem has not been realized. Herein we report an enantioselective synthesis of an advanced intermediate corresponding to the tricyclic core common to the guanacastepenes and heptemerones. Highlights of this work include sequential Pd-catalyzed decarboxylative allylic alkylation reactions to generate the two all carbon quaternary stereocenters, the use of ring-closing metathesis to close the A ring in the presence of a distal allyl sidechain, and a regio- and diastereoselective oxidation of a trienol ether to introduce oxygenation on the A ring
Inelastic Dark Matter at DAMA, CDMS and Future Experiments
The DAMA annual modulation signature, interpreted as evidence for a
spin-independent WIMP coupling, seems in conflict with null results from CDMS.
However, in models of ``inelastic dark matter'', the experiments are
compatible. Inelastic dark matter can arise in supersymmetric theories as the
real component of a sneutrino mixed with a singlet scalar. In contrast with
ordinary sneutrino dark matter, such particles can satisfy all experimental
constraints while giving the appropriate relic abundance. We discuss the
modifications to the signal seen at DAMA, in particular noting the strong
suppression of low energy events in both modulated and unmodulated components.
We discuss future experiments, with emphasis on distinguishing inelastic dark
matter from ordinary dark matter, and stressing the significance of experiments
with heavy target nuclei, such as xenon and tungsten.Comment: 4 pages; to appear in the proceedings of 5th International UCLA
Symposium on Sources and Detection of Dark Matter and Dark Energy in the
Universe (DM 2002), Marina del Rey, California, 20-22 Feb 200
A semi-implicit Hall-MHD solver using whistler wave preconditioning
The dispersive character of the Hall-MHD solutions, in particular the
whistler waves, is a strong restriction to numerical treatments of this system.
Numerical stability demands a time step dependence of the form for explicit calculations. A new semi--implicit scheme for
integrating the induction equation is proposed and applied to a reconnection
problem. It it based on a fix point iteration with a physically motivated
preconditioning. Due to its convergence properties, short wavelengths converge
faster than long ones, thus it can be used as a smoother in a nonlinear
multigrid method
Synthesis of enantioenriched γ-quaternary cycloheptenones using a combined allylic alkylation/Stork–Danheiser approach: preparation of mono-, bi-, and tricyclic systems
A general method for the synthesis of β-substituted and unsubstituted cycloheptenones bearing enantioenriched all-carbon γ-quaternary stereocenters is reported. Hydride or organometallic addition to a seven-membered ring vinylogous ester followed by finely tuned quenching parameters achieves elimination to the corresponding cycloheptenone. The resulting enones are elaborated to bi- and tricyclic compounds with potential for the preparation of non-natural analogs and whose structures are embedded in a number of cycloheptanoid natural products
History of the Diagnosis of a Sexually Transmitted Disease is Linked to Normal Variation in Personality Traits
Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system
This paper deals with the derivation and analysis of the the Hall
Magneto-Hydrodynamic equations. We first provide a derivation of this system
from a two-fluids Euler-Maxwell system for electrons and ions, through a set of
scaling limits. We also propose a kinetic formulation for the Hall-MHD
equations which contains as fluid closure different variants of the Hall-MHD
model. Then, we prove the existence of global weak solutions for the
incompressible viscous resistive Hall-MHD model. We use the particular
structure of the Hall term which has zero contribution to the energy identity.
Finally, we discuss particular solutions in the form of axisymmetric purely
swirling magnetic fields and propose some regularization of the Hall equation
Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes
Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions
Electroviscous effects of simple electrolytes under shear
On the basis of a hydrodynamical model analogous to that in critical fluids,
we investigate the influences of shear flow upon the electrostatic contribution
to the viscosity of binary electrolyte solutions in the Debye-H\"{u}ckel
approximation. Within the linear-response theory, we reproduce the classical
limiting law that the excess viscosity is proportional to the square root of
the concentration of the electrolyte. We also extend this result for finite
shear. An analytic expression of the anisotropic structure factor of the charge
density under shear is obtained, and its deformation at large shear rates is
discussed. A non-Newtonian effect caused by deformations of the ionic
atmosphere is also elucidated for . This finding
concludes that the maximum shear stress that the ionic atmosphere can support
is proportional to , where , and
are, respectively, the shear rate, the Debye screening
length and the Debye relaxation time with being the relative diffusivity at
the infinite dilution limit of the electrolyte.Comment: 13pages, 2figure
- …
