69 research outputs found

    NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11

    Get PDF
    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8–11 for all 122 alleles. artificial neural network predictions are given as actual IC50 values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75–80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC

    Pan-specific prediction of peptide-MHC Class I complex stability, a correlate of T cell immunogenicity

    Get PDF
    Binding of peptides to MHC class I (MHC-I) molecules is the most selective event in the processing and presentation of Ags to CTL, and insights into the mechanisms that govern peptide-MHC-I binding should facilitate our understanding of CTL biology. Peptide-MHC-I interactions have traditionally been quantified by the strength of the interaction, that is, the binding affinity, yet it has been shown that the stability of the peptide-MHC-I complex is a better correlate of immunogenicity compared with binding affinity. In this study, we have experimentally analyzed peptide-MHC-I complex stability of a large panel of human MHC-I allotypes and generated a body of data sufficient to develop a neural network-based pan-specific predictor of peptide-MHC-I complex stability. Integrating the neural network predictors of peptide-MHC-I complex stability with state-of-the-art predictors of peptide-MHC-I binding is shown to significantly improve the prediction of CTL epitopes. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCstabpan.Fil: Rasmussen, Michael. Universidad de Copenhagen; DinamarcaFil: Fenoy, Luis Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Harndahl, Mikkel. Universidad de Copenhagen; DinamarcaFil: Kristensen, Anne Bregnballe. Universidad de Copenhagen; DinamarcaFil: Nielsen, Ida Kallehauge. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Copenhagen; DinamarcaFil: Buus, Søren. Universidad de Copenhagen; Dinamarc

    A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01

    Get PDF
    Affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of peptides to cytotoxic T lymphocytes (CTLs). In silico prediction methods of peptide-MHC binding followed by experimental analysis of peptide-MHC interactions constitute an attractive protocol to select target peptides from the vast pool of viral proteome peptides. We have earlier reported the peptide binding motif of the porcine MHC-I molecules SLA-1*04:01 and SLA-2*04:01, identified by an ELISA affinity-based positional scanning combinatorial peptide library (PSCPL) approach. Here, we report the peptide binding motif of SLA-3*04:01 and combine two prediction methods and analysis of both peptide binding affinity and stability of peptide-MHC complexes to improve rational peptide selection. Using a peptide prediction strategy combining PSCPL binding matrices and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total of 71, 28, and 38 % were binders with affinities below 500 nM, respectively. Comparison of peptide-SLA binding affinity and complex stability showed that peptides of high affinity generally, but not always, produce complexes of high stability. In conclusion, we demonstrate how state-of-the-art prediction and in vitro immunology tools in combination can be used for accurate selection of peptides for MHC class I binding, hence providing an expansion of the field of peptide-MHC analysis also to include pigs as a livestock experimental model.Fil: Pedersen, Lasse Eggers. Technical University of Denmark; DinamarcaFil: Rasmussen, Michael. Universidad de Copenhagen; DinamarcaFil: Harndahl, Mikkel. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús) | Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús); ArgentinaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Jungersen, Gregers. Technical University of Denmark; Dinamarc

    Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength

    Get PDF
    Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, KD, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had KD below 100 nM and the peptides with KD below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had KD below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response

    A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules

    Get PDF
    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools

    HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses

    Get PDF
    BACKGROUND: Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNgamma ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4(+) or CD8(+) T cells prior to the ELISPOT culture revealed that effectors are either CD4(+) (the majority of reactivities) or CD8(+) T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4(+) T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. CONCLUSIONS/SIGNIFICANCE: HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4(+) T cell responses restricted by HLA-II molecules

    NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence

    Get PDF
    Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking.Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis.Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan
    corecore