18 research outputs found

    A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells

    No full text
    Development of Pt-free catalyst materials for the counter electrode (CE) in dye-sensitized solar cells (DSSCs) has been regarded as one of the crucial steps to improving energy conversion efficiency and cost effectiveness of DSSCs. In this work, low cost tungsten oxide (WO3-x) counter electrodes, prepared by annealing tungsten metal sheets under an Ar and low O2atmosphere, exhibited high catalytic activity and energy conversion efficiency. The highest efficiency achieved here for DSSCs with WO3-xcounter electrodes, was 5.25%, obtained from a 500 °C annealed tungsten sheet. TEM and XPS analysis suggested the formation of sub-stoichiometric tungsten oxide layer (∼WO2.6) with the presence of W6+, W5+and W4+oxidation states at the tungsten metal surface after the 500 °C annealing. Only W6+and W5+oxidation states were detected after a 600 °C annealing indicating the formation of a more stoichiometric tungsten oxide layer (∼WO2.8) and resulting in a drop in efficiency of the DSSC. We suggest that mixed valence tungsten states account for the excellent catalytic activity and good electrical conductivity as evidenced by the highest cyclic voltammetry response of 0.76 mA/cm2and the lowest impedance value of 44.33 Ω, respectively

    Transmission electron microscopy characterisation for development of CoFeB/MgO based magnetic tunnel junctions

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Eco-Friendly Triboelectric Material Based on Natural Rubber and Activated Carbon from Human Hair

    No full text
    The triboelectric nanogenerator (TENG) has emerged as a novel energy technology that converts mechanical energy from surrounding environments to electricity. The TENG fabricated from environmentally friendly materials would encourage the development of next-generation energy technologies that are green and sustainable. In the present work, a green triboelectric material has been fabricated from natural rubber (NR) filled with activated carbon (AC) derived from human hair. It is found that the TENG fabricated from an NR-AC composite as a tribopositive material and a poly-tetrafluoroethylene (PTFE) sheet as a tribonegative one generates the highest peak-to-peak output voltage of 89.6 V, highest peak-to-peak output current of 6.9 µA, and can deliver the maximum power density of 242 mW/m2. The finding of this work presents a potential solution for the development of a green and sustainable energy source

    Fe<sub>3</sub>O<sub>4</sub>-Filled Cellulose Paper for Triboelectric Nanogenerator Application

    No full text
    Cellulose-based materials have recently drawn much interest due to their sustainability, biodegradability, biocompatibility, and low cost. In this present work, cellulose fiber paper (CFP) was fabricated from sugarcane leaves and used as a friction material for a triboelectric nanogenerator (TENG). Fe3O4 was incorporated to CFP triboelectric material to increase the dielectric constant of CFP for boosting power generation of TENG. The Fe3O4 filled CFP was synthesized using a facile one-pot co-precipitation technique. The effect of Fe3O4 content in CFP on dielectric property and TENG performance was investigated and optimized. The CFP filled with Fe3O4 nanoparticles exhibited the improved dielectric constant and possessed a superior TENG performance than pristine CF. The highest power density of 1.9 W/m2 was achieved, which was able to charge commercial capacitors serving as a power source for small electronic devices

    Natural Rubber-TiO<sub>2</sub> Nanocomposite Film for Triboelectric Nanogenerator Application

    No full text
    In this research, natural rubber (NR)-TiO(2) nanocomposites were developed for triboelectric nanogenerator (TENG) application to harvest mechanical energy into electrical energy. Rutile TiO(2) nanoparticles were used as fillers in NR material to improve dielectric properties so as to enhance the energy conversion performance of the NR composite TENG. The effect of filler concentration on TENG performance of the NR-TiO(2) composites was investigated. In addition, ball-milling method was employed to reduce the agglomeration of TiO(2) nanoparticles in order to improve their dispersion in the NR film. It was found that the TENG performance was significantly enhanced due to the increased dielectric constant of the NR-TiO(2) composite films fabricated from the ball-milled TiO(2). The TENG, fabricated from the NR-TiO(2) composite using 24 h ball-milled TiO(2) at 0.5%wt, delivered the highest power density of 237 mW/m(2), which was almost four times higher than that of pristine NR TENG. Furthermore, the applications of the fabricated NR-TiO(2) TENG as a power source to operate portable electronics devices were also demonstrated

    Power Output Enhancement of Natural Rubber Based Triboelectric Nanogenerator with Cellulose Nanofibers and Activated Carbon

    No full text
    The growing demand for energy and environmental concern are crucial driving forces for the development of green and sustainable energy. The triboelectric nanogenerator (TENG) has emerged as a promising solution for harvesting mechanical energy from the environment. In this research, a natural rubber (NR)-based TENG has been developed with an enhanced power output from the incorporation of cellulose nanofibers (CNF) and activated carbon (AC) nanoparticles. The highest voltage output of 137 V, a current of 12.1 µA, and power density of 2.74 W/m2 were achieved from the fabricated NR–CNF–AC TENG. This is attributed to the synergistic effect of the electron-donating properties of cellulose material and the large specific surface area of AC materials. The enhancement of TENG performance paves the way for the application of natural-based materials to convert mechanical energy into electricity, as a clean and sustainable energy source

    Ag Nanoparticle-Incorporated Natural Rubber for Mechanical Energy Harvesting Application

    No full text
    The energy conversion performance of the triboelectric nanogenerator (TENG) is a function of triboelectric charges which depend on the intrinsic properties of materials to hold charges or the dielectric properties of triboelectric materials. In this work, Ag nanoparticles were synthesized and used to incorporate into natural rubber (NR) in order to enhance the dielectric constant for enhancing the electrical output of TENG. It was found that the size of Ag nanoparticles was reduced with the increasing CTAB concentration. Furthermore, the CTAB surfactant helped the dispersion of metallic Ag nanoparticles in the NR-insulating matrix, which promoted interfacial polarization that affected the dielectric properties of the NR composite. Ag nanoparticle-incorporated NR films exhibited an improved dielectric constant of up to almost 40% and an enhanced TENG performance that generated the highest power density of 262.4 mW/m2

    Using Natural Dye Additives to Enhance the Energy Conversion Performance of a Cellulose Paper-Based Triboelectric Nanogenerator

    No full text
    Green and sustainable power sources for next-generation electronics are being developed. A cellulose paper-based triboelectric nanogenerator (TENG) was fabricated to harness mechanical energy and convert it into electricity. This work proposes a novel approach to modify cellulose paper with natural dyes, including chlorophyll from spinach, anthocyanin from red cabbage, and curcumin from turmeric, to enhance the power output of a TENG. All the natural dyes are found to effectively improve the energy conversion performance of a cellulose paper-based TENG due to their photogenerated charges. The highest power density of 3.3 W/m2 is achieved from the cellulose paper-based TENG modified with chlorophyll, which is higher than those modified with anthocyanin and curcumin, respectively. The superior performance is attributed not only to the photosensitizer properties but also the molecular structure of the dye that promotes the electron-donating properties of cellulose

    Enhanced dielectric response and non-Ohmic properties of Ge-doped CaTiO3/CaCu3Ti4O12

    No full text
    We present a method for increasing the dielectric constant of CaTiO3/CaCu3Ti4O12 (CTO/CCTO) composites and retaining a low-loss tangent (tanδ) by doping with Ge dopant. The Ge-doped CTO/CCTO composites were fabricated using a one-step processing method. The phase composition and microstructure analyses confirmed the existence of CTO and CCTO phases, in which Ge doping ions can be substituted into both phases. The mean grain sizes of the two phases were slightly reduced by decreasing the porosity. Doping the CTO/CCTO with Ge doping ions resulted in a high dielectric constant by ~ two times, while a very low tanδ value of ~0.01 did not change. Furthermore, the dielectric constant changed by less than ±15% in the temperature range of −60 – 150°C. The nonlinear current density–electric field properties of CTO/CCTO can also be enhanced. Impedance spectroscopy showed a heterogeneous microstructure with enhanced grain boundary properties after doping with Ge dopants, giving rise to enhanced nonlinear electrical properties. The decreased grain resistivity due to Ge substitution is confirmed to originate from the increase in the Ti3+/Ti4+ ratio, which was analyzed using X–ray photoelectron spectroscopy
    corecore