384 research outputs found

    Evidence

    Get PDF
    This article is part of the District of Columbia Survey

    Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles

    Get PDF
    Achieving fairness and soundness in non-simultaneous rational secret sharing schemes has proved to be challenging. On the one hand, soundness can be ensured by providing side information related to the secret as a check, but on the other, this can be used by deviant players to compromise fairness. To overcome this, the idea of incorporating a time delay was suggested in the literature: in particular, time-delay encryption based on memory-bound functions has been put forth as a solution. In this paper, we propose a different approach to achieve such delay, namely using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO 2019, and construct a fair and sound rational secret sharing scheme in the non-simultaneous setting from HTLPs. HTLPs are used to embed sub-shares of the secret for a predetermined time. This allows to restore fairness of the secret reconstruction phase, despite players having access to information related to the secret which is required to ensure soundness of the scheme. Key to our construction is the fact that the time-lock puzzles are homomorphic so that players can compactly evaluate sub-shares. Without this efficiency improvement, players would have to independently solve each puzzle sent from the other players to obtain a share of the secret, which would be computationally inefficient. We argue that achieving both fairness and soundness in a non-simultaneous scheme using a time delay based on CPU-bound functions rather than memory-bound functions is more cost effective and realistic in relation to the implementation of the construction

    Mapping the Binding between the Tetraspanin Molecule (Sjc23) of Schistosoma japonicum and Human Non-Immune IgG

    Get PDF
    BACKGROUND: Schistosomal parasites can establish parasitization in a human host for decades; evasion of host immunorecognition including surface masking by acquisition of host serum components is one of the strategies explored by the parasites. Parasite molecules anchored on the membrane are the main elements in the interaction. Sjc23, a member of the tetraspanin (TSP) family of Schistosoma japonicum, was previously found to be highly immunogenic and regarded as a vaccine candidate against schistosomiasis. However, studies indicated that immunization with Sjc23 generated rapid antibody responses which were less protective than that with other antigens. The biological function of this membrane-anchored molecule has not been defined after decades of vaccination studies. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we explored affinity pull-down and peptide competition assays to investigate the potential binding between Sjc23 molecule and human non-immune IgG. We determined that Sjc23 could bind human non-immune IgG and the binding was through the interaction of the large extra-cellular domain (LED) of Sjc23 (named Sjc23-LED) with the Fc domain of human IgG. Sjc23 had no affinity to other immunoglobulin types. Affinity precipitation (pull-down assay) in the presence of overlapping peptides further pinpointed to a 9-amino acid motif within Sjc23-LED that mediated the binding to human IgG. CONCLUSION AND SIGNIFICANCE: S. japonicum parasites cloak themselves through interaction with human non-immune IgG, and a member of the tetraspanin family, Sjc23, mediated the acquisition of human IgG via the interaction of a motif of 9 amino acids with the Fc domain of the IgG molecule. The consequence of this interaction will likely benefit parasitism of S. japonicum by evasion of host immune recognition or immunoresponses. This is the first report that an epitope of schistosomal ligand and its immunoglobulin receptor are defined, which provides further evidence of immune evasion strategy adopted by S. japonicum

    SDS-PAGE-Based Quantitative Assay for Screening of Kidney Stone Disease

    Get PDF
    Kidney stone disease is a common health problem in industrialised nations. We developed a SDS-PAGE-based method to quantify Tamm Horsfall glycoprotein (THP) for screening of kidney stone disease. Urinary proteins were extracted by using ammonium sulphate precipitation at 0.27 g salt/mL urine. The resulted pellet was dissolved in TSE buffer. Ten microliters of the urinary proteins extract was loaded and separated on 10% SDS-PAGE under reducing condition. THP migrated as single band in SDS-PAGE. The assay reproducibility and repeatability were 4.8% CV and 2.6% CV, respectively. A total of 117 healthy subjects and 58 stone patients were tested using this assay, and a distinct cut-off (P < 0.05) at 5.6 μg/mL THP concentration was used to distinguish stone patients from healthy subjects. The sensitivity and specificity of the method were 92.3% and 83.3%, respectively

    Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.)

    Get PDF
    A 1.8 kb 5′-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from –986 to –959 and from –472 to –424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative β-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were ∼10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves

    The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph

    Get PDF
    Background: Gastrointestinal nematode (GIN) infections are the predominant cause of economic losses in sheep. Infections are controlled almost exclusively by the use of anthelmintics which has lead to the selection of drug resistant nematode strains. An alternative control approach would be the induction of protective immunity to these parasites. This study exploits an ovine microarray biased towards immune genes, an artificially induced immunity model and the use of pseudo-afferent lymphatic cannulation to sample immune cells draining from the intestine, to investigate possible mechanisms involved in the development of immunity.\ud \ud Results: During the development of immunity to, and a subsequent challenge infection with Trichostrongylus colubriformis, the transcript levels of 2603 genes of cells trafficking in afferent intestinal lymph were significantly modulated (P < 0.05). Of these, 188 genes were modulated more than 1.3-fold and involved in immune function. Overall, there was a clear trend for down-regulation of many genes involved in immune functions including antigen presentation, caveolar-mediated endocytosis and protein ubiquitination. The transcript levels of TNF receptor associated factor 5 (TRAF5), hemopexin (HPX), cysteine dioxygenase (CDO1), the major histocompatability complex Class II protein (HLA-DMA), interleukin-18 binding protein (IL-18BP), ephrin A1 (EFNA1) and selenoprotein S (SELS) were modulated to the greatest degree.\ud \ud Conclusions: This report describes gene expression profiles of afferent lymph cells in sheep developing immunity to nematode infection. Results presented show a global down-regulation of the expression of immune genes which may be reflective of the natural temporal response to nematode infections in livestock
    corecore