24 research outputs found

    Maturation of Gut Microbiota and Circulating Regulatory T Cells and Development of IgE Sensitization in Early Life

    Get PDF
    Recent studies suggest that the cross-talk between the gut microbiota and human immune system during the first year of life is an important regulator of the later development of atopic diseases. We explored the changes in the gut microbiota, blood regulatory T cells, and atopic sensitization in a birth-cohort of Estonian and Finnish children followed from 3 to 36 months of age. We describe here an infant Treg phenotype characterized by high Treg frequency, the maturation of Treg population characterized by a decrease in their frequency accompanied with an increase in the highly activated Treg cells. These changes in Treg population associated first with the relative abundance of Bifidobacterium longum followed by increasing colonization with butyrate producing bacteria. High bifidobacterial abundance in the neonatal microbiota appeared to be protective, while colonization with Bacteroides and E. coli was associated with later risk of allergy. Estonian children with lower risk of IgE mediated allergic diseases than Finnish children showed an earlier maturation of the gut microbiota, detected as earlier switch to an increasing abundance of butyrate-producing bacteria, combined with an earlier maturation of Treg cell phenotype and total IgE production. The children with established allergic diseases by age 3 showed a decreased abundance of butyrate producing Faecalibacterium. These results suggest that as well as the maintenance of a bifidobacterial dominated gut microbiota is important during the first weeks of life, the overtake by butyrate producing bacteria seems to be a beneficial shift, which should not be postponed

    Denaturing gradient gel electrophoresis analysis to study bacterial community structure in pockets of periodontitis patients

    Get PDF
    Bacteria are involved in the onset and progression of periodontitis. A promising molecular technique, denaturing gradient gel electrophoresis (DGGE), to study microbial population dynamics in the subgingival pocket is presented. Twenty-three samples were taken from the subgingival pockets of nine patients and six healthy family members. From four periodontitis patients, 12 samples were evaluated before, 1 day after and 3 months after treatment. Part of the 16S rRNA gene of all bacteria was amplified by PCR and separated by DGGE, creating banding patterns representative of the community structure. Shifts in composition and diversity of the microbial population could be determined semiquantitatively, and this showed that treatment resulted in a decrease in the diversity of the population. After 3 months a microbial population 33-47% different from the population before treatment had re-established. Intense bands representing Exiguobacterium aurantiacum were present in 13 out of 25 samples, indicating that this species may play a role in periodontal disease
    corecore