79 research outputs found

    The HMIâ„¢ module: a new tool to study the host-microbiota interaction in the human gastrointestinal tract in vitro

    Get PDF
    Background: Recent scientific developments have shed more light on the importance of the host-microbe interaction, particularly in the gut. However, the mechanistic study of the host-microbe interplay is complicated by the intrinsic limitations in reaching the different areas of the gastrointestinal tract (GIT) in vivo. In this paper, we present the technical validation of a new device - the Host-Microbiota Interaction (HMI) module - and the evidence that it can be used in combination with a gut dynamic simulator to evaluate the effect of a specific treatment at the level of the luminal microbial community and of the host surface colonization and signaling. Results: The HMI module recreates conditions that are physiologically relevant for the GIT: i) a mucosal area to which bacteria can adhere under relevant shear stress (3 dynes cm-2); ii) the bilateral transport of low molecular weight metabolites (4 to 150 kDa) with permeation coefficients ranging from 2.4 x 10(-6) to 7.1 x 10(-9) cm sec(-1); and iii) microaerophilic conditions at the bottom of the growing biofilm (PmO2 = 2.5 x 10(-4) cm sec(-1)). In a long-term study, the host's cells in the HMI module were still viable after a 48-hour exposure to a complex microbial community. The dominant mucus-associated microbiota differed from the luminal one and its composition was influenced by the treatment with a dried product derived from yeast fermentation. The latter - with known anti-inflammatory properties induced a decrease of pro-inflammatory IL-8 production between 24 and 48 h. Conclusions: The study of the in vivo functionality of adhering bacterial communities in the human GIT and of the localized effect on the host is frequently hindered by the complexity of reaching particular areas of the GIT. The HMI module offers the possibility of co-culturing a gut representative microbial community with enterocyte-like cells up to 48 h and may therefore contribute to the mechanistic understanding of host-microbiome interactions

    Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands.

    Get PDF
    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the beginning teachers (BTs) context was investigated using a sample of 356 beginning teachers from 52 different secondary school locations in the Netherlands. Confirmatory Factor Analyses, Principal Component Analyses and Mokken scaling item reduction was applied to create high concise and precise scales. Hereafter, based on the teacher stress literature, additional teacher specific stress items were added, resulting in the adjusted version of the measure, the Questionnaire on the Experience and Evaluation of Work – Beginning Teachers (QEEW-BT, study 1). To cross-validate the results and to examine the internal consistency and validity of the adjusted instrument a different sample of 143 beginning teachers from 61 different secondary school locations in the Netherlands was used (study 2). The present findings provide adequate support that the QEEW-BT is a reliable and valid instrument to measure stress causes and responses for beginning secondary school teachers in the Netherlands

    Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is associated with premature and accelerated atherosclerosis. Circulating progenitor cells (CPCs) are circulating bone-marrow derived cells that play an important role in the repair of vascular damage that underlies the development of atherosclerosis. The objective of this study was to determine the number and functionality of CPCs in patients with SLE. The study included 44 female SLE patients in an inactive stage of disease and 35 age-matched female controls. CPC numbers in the circulation were determined by FACS with monoclonals against CD14, CD34 and CD133. Peripheral blood-derived mononuclear cell (PBMNC) fractions were cultured in angiogenic medium. The endothelial-like phenotype was confirmed and the colony forming unit (CFU) capacity, migratory capacity and the potential to form clusters on Matrigel were determined. Expression of apoptosis inhibiting caspase 8L was analyzed in PBMNCs and CPCs by gene transcript and protein expression assays. The number of CD34–CD133 double-positive cells (P < 0.001) as well as the CFU capacity (P = 0.048) was reduced in SLE patients. Migratory activity on tumor necrosis factor-α tended to be reduced in patient CPCs (P = 0.08). Migration on vascular endothelial growth factor showed no significant differences, nor were differences observed in the potential to form clusters on Matrigel. The expression of caspase 8L was reduced at the transcriptional level (P = 0.049) and strongly increased at the protein level after culture (P = 0.003). We conclude that CPC numbers are reduced in SLE patients and functionality is partly impaired. We suggest these findings reflect increased susceptibility to apoptosis of CPCs from SLE patients

    Anaerobic Feces Processing for Fecal Microbiota Transplantation Improves Viability of Obligate Anaerobes

    Get PDF
    Fecal microbiota transplantation (FMT) is under investigation for several indications, including ulcerative colitis (UC). The clinical success of FMT depends partly on the engraftment of viable bacteria. Because the vast majority of human gut microbiota consists of anaerobes, the currently used aerobic processing protocols of donor stool may diminish the bacterial viability of transplanted material. This study assessed the effect of four processing techniques for donor stool (i.e., anaerobic and aerobic, both direct processing and after temporary cool storage) on bacterial viability. By combining anaerobic culturing on customized media for anaerobes with 16S rRNA sequencing, we could successfully culture and identify the majority of the bacteria present in raw fecal suspensions. We show that direct anaerobic processing of donor stool is superior to aerobic processing conditions for preserving the bacterial viability of obligate anaerobes and butyrate-producing bacteria related to the clinical response to FMT in ulcerative colitis patients, including Faecalibacterium, Eubacterium hallii, and Blautia. The effect of oxygen exposure during stool processing decreased when the samples were stored long-term. Our results confirm the importance of sample conditioning to preserve the bacterial viability of oxygen-sensitive gut bacteria. Anaerobic processing of donor stool may lead to increased clinical success of FMT, which should further be investigated in clinical trials.</p
    • …
    corecore